Artikel und Bücher

Perda, G.; Morelli, L.; Remondino, F.; Fraser, C.; Luhmann, T. (2024): Analyzing marker-based, handcrafted and learning-based methods for automated 3D measurement and modelling. Optical 3D Metrology Workshop, Brescia
Paulau, P.; Hurka, J.; Middelberg, J.; Koch, S. (2024): Centralised monitoring and control of buildings using open standards. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences , doi: 10.5194/isprs-annals-X-4-W4-2024-169-2024 , Weblink
Sheikholeslami, Mohammad Moein; Kamran, Muhammad; Wichmann, Andreas; Sohn, Gunho (2024): CornerRegNet: Building Segmentation from Overhead Imagery Using Oriented Corners in Deep Networks. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
Sieberth, T.; Meindl, Michael; Sagmeiser, Bernhard; Franckenberg, Sabine; Ptacek, Wolfgang (2024): Cost-effective 3D documentation device in forensic medicine. Forensic Science International , doi: https://doi.org/10.1016/j.forsciint.2024.112005
Sheikholeslami, Mohammad Moein; Kamran, Muhammad; Wichmann, Andreas; Sohn, Gunho (2024): Enhancing Polygonal Building Segmentation via Oriented Corners. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , doi: https://doi.org/10.48550/arXiv.2407.12256 , Weblink

Vorträge

Sieberth, T. : Photogrammetrie in der Forensik. Schlaues Haus Oldenburg, September 2024 Weblink
Pesch, R. ; Berkström, C. ; Bergström, U. ; Ract, C. ; Sacre, E. ; Leiz, M. ; Lenzi, J. ; Ahvo, A. ; Fetissov, M. ; Kaasik, A. ; Kotta, J. ; Juva, K. ; Takkolander, A. ; Virtanen, E. : Work package updates PROTECT BALTIC WP3 – Spatial Modelling. Protect Baltic Annual Meeting 2024, September 2024
Fincken, M. : Machine Learning für flächendeckende Geothermie-Potentialanalysen im Kontext der geodatenbasierten Wärmeleitplanung. Künstliche Intelligenz in der Geodäsie und Geoinformation, BILDUNGSWERK VDV, Paderborn, Juni 2024
Wichmann, A. : Antrittsvorlesung: Kartographie und Geovisualisierung. Kolloquium Geoinformation, Juni 2024 Weblink
Nietiedt, S. : Occlusion handling in spatio-temporal object-based image sequence matching. ISPRS TC II Mid-term Symposium, Las Vegas, Nevada, USA, Juni 2024 doi: https://doi.org/10.5194/isprs-annals-X-2-2024-163-2024

Projekte

Gefördert durch: Niedersächsisches Vorab
Die Digitalisierung stellt auch Museen vor große Herausforderungen. So umfasst die Sammlung des Landesmuseums Natur und Mensch Oldenburg Objekte aus der Naturkunde, der Archäologie und der Ethnologie, von denen bis jetzt nur ein Bruchteil digital e... mehr
Personen
Prof. Dr.-Ing. habil. Dr. h.c. Thomas Luhmann (Leitung) Simon Albers, M.Sc. (10.2022-03.2023) Paul Kalinowski, M.Sc.
Gefördert durch: Bundesministerium für Bildung und Forschung
Eine besondere Herausforderung stellt eine zukünftig dekarbonisierte Wärmeversorgung im urbanen Bereich dar. Die technische Fokussierung auf die Systemkopplung von Strom und Wärme zur Erhöhung des Anteils regenerativer Energien in der Wärmeverso... mehr
Personen
Prof. Dr. Jürgen Knies (Leitung) (03.2019-12.2019) Prof. Dr. Sascha Koch (Leitung) (03.2020-) Sebastian Erdmann, M.Sc. (10.2020-07.2021) Marvin Schnabel, M.Sc. (01.2022-)
Gefördert durch: Europäischer Fonds für regionale Entwicklung (EFRE)
Das Ziel des Verbundprojektes ist die gleichzeitige geometrische Erfassung von turbulenten Windströmungen (Fluidverhalten) und Deformationen von Rotorblattoberflächen von Windenergieanlagen, um neue Erkenntnisse über ihr Verhalten bei Last... mehr
Personen
Prof. Dr.-Ing. habil. Dr. h.c. Thomas Luhmann (Leitung) Sinah Vogel (01.2021-04.2021) Dr. Ing. Thomas Willemsen (10.2018-06.2019) Simon Nietiedt, M.Sc. Annika Katrin Jepping, B.Sc. Martina Göring, M.Sc. Robin Rofallski, M.Sc.

Abschlussarbeiten


Augmented Reality in der Flurbereinigung: Untersuchung zur Visualisierung der Besitzeinweisung (2024/2)
Betreuer

Prof. Dr. Ingrid Jaquemotte

Dr. Andre Riesner

Untersuchung zur Georeferenzierung und Nutzung von Urkarten des Liegenschaftskatasters (2024/2)
Analyse und Vergleich der geometrischen Eigenschaften von Referenzdaten und KI-Ergebnissen für die automatische Gebäudeerkennung in Luftbildern (2024/2)
Maschinelles Lernen für die Identifikation von baulichen Erweiterungen an Gebäuden anhand geometrischer Merkmale von ALKIS- und durch KI bestimmten Hausumringen (2024/2)
Integration und Verteilung von ALKIS-Grunddaten und Fortführungsdaten in Echtzeit mittels Open-Source-Technologien (2024/2)