Books and Papers
all
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
Lorkowski, P. (2019):
A System Architecture for the Monitoring of Continuous Phenomena by Sensor Data Streams. Dissertation an der Universität Osnabrück
, Weblink
Czwikla, J.; Urbschat, I.; Kieschke, J.; Schüssler, F.; Langner, I.; Hoffmann, F. (2019):
Assessing and Explaining Geographic Variations in Mammography Screening Participation and Breast Cancer Incidence. Frontiers in Oncology
, doi: https://doi.org/10.3389/fonc.2019.00909 , Weblink
Luhmann, T.; Robson, S.; Kyle, S.; Böhm, J. (2019):
Close-Range Photogrammetry and 3D Imaging. 3rd edition, Walter de Gruyter, Berlin, 822 pages
Chizhova, M.; Luhmann, T.; Gorkovchuk, D.; Hastedt, H.; Chachava, N.; Lekveishvili, N. (2019):
Combination of terrestrial laserscanning, UAV and close-range photogrammetry for 3D reconstruction of complex churches in Georgia. GEORES 2019, 2nd International Conference of Geomatics and Restoration, ISPRS International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XLII-2/W11, pp. 753-761.
, doi: https://doi.org/10.5194/isprs-archives-XLII-2-W11-753-2019
Brinkhoff, T. (2019):
Determining Point Locations of Populated Places by Using Area Datasets. Accepted Short Papers and Posters from the 22nd AGILE Conference on Geo‐information Science, Limassol, Cyprus, ISBN 978‐90‐816960‐9‐8
, Weblink
Presentations
Pesch, R.
; Berkström, C. ; Bergström, U. ; Ract, C. ; Sacre, E. ; Leiz, M.
; Lenzi, J.
; Ahvo, A. ; Fetissov, M. ; Kaasik, A. ; Kotta, J. ; Juva, K. ; Takkolander, A. ; Virtanen, E. :
Work package updates PROTECT BALTIC WP3 – Spatial Modelling.
Protect Baltic Annual Meeting 2024,
September 2024
Fincken, M.
:
Machine Learning für flächendeckende Geothermie-Potentialanalysen im Kontext der geodatenbasierten Wärmeleitplanung.
Künstliche Intelligenz in der Geodäsie und Geoinformation, BILDUNGSWERK VDV, Paderborn,
Juni 2024
Wichmann, A.
:
Antrittsvorlesung: Kartographie und Geovisualisierung.
Kolloquium Geoinformation,
Juni 2024
Weblink
Nietiedt, S.
:
Occlusion handling in spatio-temporal object-based image sequence matching.
ISPRS TC II Mid-term Symposium, Las Vegas, Nevada, USA,
Juni 2024
doi: https://doi.org/10.5194/isprs-annals-X-2-2024-163-2024
Projects
funded by: German Research Foundation
Classical methods of photogrammetric deformation analysis are essentially a two-step process of spatio-temporal image matching (STM) followed by the calculation of deformation parameters. In many close-range applications, further kinematic in... more
funded by: Niedersächsisches Vorab
Transformation and structural change in rural areas mean changes in space and time. Such spatiotemporal data is to be managed and processed by our “Geo-Toolbox”. It uses digital technologies such as databases and geographic information systems ... more
people
Prof. Dr. Thomas Brinkhoff (head) Prof. Dr. rer. nat. habil. Roland Pesch (head) Prof. Dr. rer. nat. Frank Schüssler (head) Tobias Werner, M.Sc. (10.2022-) Jonas Schoo, M.Sc. (06.2022-) Maren Leiz, M.Sc. (08.2022-) Dr. Amirmohammad Ghavimi (08.2022-)
Prof. Dr. Thomas Brinkhoff (head) Prof. Dr. rer. nat. habil. Roland Pesch (head) Prof. Dr. rer. nat. Frank Schüssler (head) Tobias Werner, M.Sc. (10.2022-) Jonas Schoo, M.Sc. (06.2022-) Maren Leiz, M.Sc. (08.2022-) Dr. Amirmohammad Ghavimi (08.2022-)
funded by: Bundesministerium für Bildung und Forschung
The Project – „CoSAIR – Collaborative Spatial Artificial Intelligence in Realtime“ is funded by the Federal Ministry of Education and Research within the program „Research at Universities of Applied Sciences“ in order to create, consolida... more
people
Prof. Dr. Sascha Koch (head) Tobias Neiß-Theuerkauff, M.Sc. (-03.2024) Oliver Kahmen, M.Sc. (04.2022-07.2022) Prof. Dr.-Ing. habil. Dr. h.c. Thomas Luhmann Mareike Fincken, M.Sc. (09.2023-)
Prof. Dr. Sascha Koch (head) Tobias Neiß-Theuerkauff, M.Sc. (-03.2024) Oliver Kahmen, M.Sc. (04.2022-07.2022) Prof. Dr.-Ing. habil. Dr. h.c. Thomas Luhmann Mareike Fincken, M.Sc. (09.2023-)
Bachelor & Master Theses
Evaluierung cloud-optimierter Datenformate zur Speicherung und Analyse großer raumzeitlicher Rasterdaten (2024/12)
Untersuchungen zur laserscanner-basierten Schwingungsmessung am Beispiel eines Rotorblattes einer Windenergieanlage im Stillstand (2024/12)
Untersuchungen zur Optimierung der Kamerakonfiguration bei einer TubeInspect Messzelle für die Messung von Rechteckprofilen (2024/12)
cooperation
Prozedurale Generierung urbaner Umgebungen – Entwicklung eines Prototyps mittels Unreal Engine (2024/11)
Entwicklung einer Cloud-nativen Architektur zur Verwaltung und Verarbeitung rasterbasierter Bodenbewegungsdaten (2024/11)