
XFormsGI:
Extending XForms for Geospatial and Sensor Data

Jürgen Weitkämper and Thomas Brinkhoff

Institute for Applied Photogrammetry and Geoinformatics (IAPG)
FH Oldenburg/Ostfriesland/Wilhelmshaven (University of Applied Sciences)

Ofener Str. 16/19, 26121 Oldenburg, Germany
{juergen.weitkaemper,thomas.brinkhoff}@fh-oow.de

Abstract. User interaction is mostly based on forms. However, forms are
restricted to alphanumerical data – the editing of geospatial data is not
supported. This statement does not only hold for established form standards like
HTML forms, but also for the new W3C standard XForms. XForms defines a
declarative framework for using forms and processing form data. It can be used
with a variety of XML host languages. In this paper, we present an extension to
XForms (called XFormsGI) that provides control elements for entering new
geometries, for modifying the properties of existing objects as well as for
selecting geometric entities. As XForms, XFormsGI is declarative, thus
avoiding script extensions. XFormsGI supports coordinate systems.
Additionally, it can be used for capturing and displaying sensor data like GPS
or for the measurements of distances or temperatures. A prototypical
implementation has been integrated into a mobile SVG client running on a
PDA.

Keywords: XForms, SVG, Geographic Information Systems (GIS), Location-
Based Services (LBS), User Interaction, Sensors.

1 Introduction

Nearly all software applications require human interaction for editing data or for
displaying the results of a computation. The most important approach for such user
interaction is based on forms. Forms are applied for depicting alphanumerical data as
well as for requesting input from the user. They are not only used by desktop
applications, but also by web and mobile applications. For web applications, HTML
forms [10] are typically utilized.

As mentioned before, forms only offer display and input capabilities for
alphanumerical data. In case of Geographic Information Systems (GIS) and other GI
applications, however, it must be possible to display and capture geospatial data by
graphical user interaction. Especially for web and mobile applications, it would be
desirable to be able to describe the geospatial input facilities of the application
declaratively in analogy to forms. Without such means, additional scripts and/or
applets must be used for implementing the presentation and input of geospatial data.

presented at: 7th International Symposium on Web and Wireless GIS
(W2GIS 2007), Cardiff, UK, November 2007.
published in: Web and Wireless Geographical Information Systems,
Lecture Notes in Computer Science, Vol. 4857, Springer, 2007, 76-93.

The SPARK framework [3] is an example for such an approach that leads to a
conceptional break between the handling of alphanumeric data and of geospatial data.

The new W3C standard XForms [14] allows describing the user manipulation of
alphanumeric data in the context of XML documents. Like XHTML [16] should take
the place of HTML, XForms is supposed to replace HTML forms. But in addition, it
is able to be integrated into other XML standards. In case of graphical and geospatial
XML documents, Scalable Vector Graphics (SVG) [12] and the Geography Markup
Language (GML) [8] could be host languages for XForms. Like HTML forms,
XForms does not support interaction with geospatial data. But XForms is suitable to
be extended for geospatial data. In contrast to HTML forms, XForms separates the
visual representation of the user interface from the underlying data model. A single
device-independent XML form definition has the capability to work with a variety of
standard or proprietary user interfaces.

In this paper, we propose an extension that is conform to XForms. It allows for
editing geometric entities like georeferenced points, lines and areas. Our extension is
called XFormsGI. Its main characteristics are:
• XFormsGI provides control elements for entering new geometries, for modifying

the properties of existing objects as well as for selecting geometric entities.
• XFormsGI is declarative, avoiding complicated and confusing script extensions.
• XFormsGI takes spatial reference systems into account.
We will show in the following that the concept of XFormsGI is not only suitable for
capturing geospatial data, but can also be used for sensor data like GPS positions or
the measurements of distances or temperatures. This is especially useful for
supporting mobile GIS applications and location-based services (LBS). In this case,
metadata like quality, number of visible GPS satellites, the moving direction are
processed in addition to the pure sensor data. For validating the concept of
XFormsGI, a prototype has been implemented and integrated into a mobile SVG
client running on a PocketPC PDA.

The rest of the paper is organized as follows: After presenting the essentials of
XForms, the concept and control elements of XFormGI for geospatial data are
introduced. The fourth section deals with supporting sensor data. Section 5 presents
an application of our approach and Section 6 gives an overview on related work. The
paper concludes with a summary and an outlook to future work.

2 The XForms Standard

In this section, we give a brief outline of the XML-based standard XForms.
XForms [14] has its origins in HTML forms and will replace the current forms in

future versions of XHTML. The use of XForms is not restricted to (X)HTML but can
be embedded in arbitrary XML applications. XForms overcomes several of the
limitations of HTML forms. Notably, it separates clearly the purpose from the
presentation of a form: “XForms are comprised of separate sections that describe
what the form does, and how the form looks. (…) XForms is designed to gather
instance data, serialize it into an external representation, and submit it with a
protocol.” [15].

The functionality of a form is described in one or more model elements, whereas its
presentation is represented by a set of control elements.

2.1 The XForms Model

The model element describes several properties of the form:
• An XForms form collects its data – the so-called instance data – as child elements

of its instance element. The instance data will be displayed by control
elements.

• The structure of the instance data, i.e. the set of attributes, is defined by the
schema element. The schema is also used to constrain the domain of data.

• The data flow to and from the server that is processing the form data is given by
the submission element.

• An optional model binding expression (bind element) establishes the relation
between the control elements and their instance data

Figure 1 gives an overview on the cooperation between the components of XForms.

Fig. 1. Overall structure of XForms [15].

Figure 2 depicts the essential parts of an XForms model by a small example
document.

<xforms:model id="form1" schema="xxx.xsd">
<xforms:submission method = "post"

id = "send"
action = "http://..." />

<xsd:schema>
...
<xsd:simpleType name="status">

<xsd:restriction base="xsd:string">
<xsd:enumeration value="prof"/>
<xsd:enumeration value="stud"/>
<xsd:enumeration value="other"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:schema>
<xforms:instance>

<data>
<name>Wacker</name>
<firstname>Willi</firstname>
<status>prof</status>

</data>
</xforms:instance>

</xforms:model>
Fig. 2. Example of the model element.

The URI http://www.w3.org/2002/xforms is the namespace of XForms. In
our examples, we will use xforms as namespace prefix.

2.2 Controls

The form presented to a user is defined by a set of control elements defining the
principal appearance and interaction of the form. They are embedded in a so-called
host language. The host language is the XML application that contains the form. The
most prominent example is XHTML. In case of graphical applications, the Scalable
Vector Graphics (SVG) is a suitable host language.

In contrast to HTML forms, there exists no element which serves as container for
all controls of one model. Instead, all controls referencing instance data of the same
model element are considered a unit. They may be spread over the host document.
There are several predefined controls like input fields, buttons, checkboxes, file
upload elements, etc. Each control may have a label element as child which is placed
automatically by the client.

Figure 3 depicts an example of an XForms trigger control with an embedded
label usually displayed as a button.

<xforms:trigger>
<xforms:label>Submit</xforms:label>

</xforms:trigger>
Fig. 3. Example of an XForms trigger.

Data Binding
The relation between a control element of the form and its instance data is established
by the XForms binding mechanism. Each control refers to a model by a model
attribute that may be omitted if the document only contains a single model. For
specifying the element storing the data within the instance element, there exist mainly
two alternatives:
• using the ref attribute to specify an XPath pointing to a child element of
instance or

• using the bind attribute to reference a bind element in the model which in turn
uses e.g. an XPath expression for defining the location of the data element.

In contrast to HTML, the XForms specification allows the definition of repeating
structures. This permits the multiple insertion of input from a single set of controls as
a sequence into the instance data.

Transmission of Data
An important functionality of forms is the transmission of data to a server that
performs the processing of the input data or that provides data to be displayed. For
this purpose, the submit element exists as a control element. When the submit
control is activated by the user, the instance data is collected and transmitted. This is
performed according to the protocol and address specified in the submission
element of the corresponding model (see Figure 2).

Embedding of XForms into SVG
As mentioned before, SVG is a suitable host language for graphical applications. The
foreignObject element of SVG can be used for embedding XForms controls.
Figure 4 depicts some XForms controls embedded into SVG.

<model id="form1" >
...
<instance>
<daten>

<name>Müller</name>
<firstname>Willi</firstname>
<status>prof</status>

</daten>
</instance>

</model>

<foreignObject x="0" y="110" width="100" height="20">
<input model="form1" ref="/daten/name">

<label>Name:</label>
</input>

</foreignObject>
Fig. 4. Example of an XForms fragment that can be embedded in an SVG document.

Figure 5 shows the corresponding form displayed by the implemented prototype
running on a PocketPC PDA.

Fig. 5. Display of an XForm by the PDA prototype.

2.3 Event Handling

XForms defines several events sent on state transitions of the document, controls or
models. These events can either directly be routed to XForms actions like reset
(resetting the form), setfocus (setting the focus to a specified control element), etc.
or can be processed by scripts. XForms itself defines no method for script-based
event handling. The definition of such facilities is a responsibility of the host
language.

Figure 6 shows the usage of the action reset in order to model the behavior of
the reset button known from HTML forms; such a control is not defined by XForms.

<xforms:trigger>
<xforms:label>Reset</xforms:label>
<xforms:reset ev:event="DOMActivate" model="themodel"/>

</xforms:trigger>
Fig. 6. Example of the usage of the action reset.

3 XFormsGI

In the following we describe an extension of XForms for capturing geospatial and
sensor data. This extension will be called XFormsGI.

For XFormsGI we introduce the namespace URI http://www.fh-
oldenburg.de/xformsgi. In the subsequent examples the namespace prefix
xfmgi is used.

3.1 Controls

Several XFormsGI controls provide editing facilities for geospatial data. Geometric
editing is usually performed by a pointing device like a mouse or track ball for
desktop computers or a stylus for tablet PCs and mobile devices. Like in XForms, the
details of interaction are not specified but left to the client implementation.

XFormsGI controls share most of the properties and behavior of XForm controls.
One difference concerns the client visualization: To each XForms control, there exists
a corresponding user interface element visualized by the client. For example, an
XForms input element is usually represented as an edit box that also displays its
instance data. In contrast, the main task of an XFormsGI control is to capture
geometric data by pointing devices. To this end, it neither requires a direct visual
representation nor the display of the corresponding data.

The controls introduced by XFormsGI are summarized in Table 1.

Table 1. XFormsGI controls.

Control Description
input Definition of a new base geometry.

construct
Like input. Additionally, from the base geometry a
geometric entity of the host language is constructed based on a
template.

select Selection of elements for further processing.

modify Modification of geometric properties of existing elements,
mostly used in conjunction with a select control.

sensor Definition of sensors like GPS (see Section 4).

State of XFormsGI Controls
Another difference between XForms and XFormsGI concerns the start and
termination of an input. An XForms control like the text input element can be
activated any time by the user to add, remove or modify one or more characters. If the
user chooses to switch to another input field, the first one is not affected. In contrast,
geometric interaction in general consists in a sequence of distinct steps that have to be
performed in a certain order and that cannot be interrupted easily. Thus, an XFormsGI
control needs to keep track of a state which consists of at least two possible values
stopped or running. In order to start an input sequence, the state of the control
has to be switched from stopped to running. This can be performed either by a trigger
like a button or implicitly when the user picks an element. Selection and modification
operations are typical examples where implicit activation is often used: Whenever an

element is picked, the object is, e.g., added to the selection set or it is marked by a
frame with “drag grapples” to allow stretching, rotation or displacement.

In order to represent the state, all XFormsGI controls have an attribute state
which can have one of the following values:
• stopped, when the input is currently deactivated (default value of state),
• running, when input is currently active, and
• start-implicit, when the input sequence starts whenever the user picks

certain elements.
This attribute can be modified by scripts in order to start an input sequence.

A further difficulty arises from the fact that some interaction sequences not only
need a start trigger but also a stop trigger. Consider as example the construction of a
line string with a previously unknown number of points. If a closed ring should be
constructed, the user can pick the first point again to terminate the construction. If it
needs not being closed, a separate trigger is required to terminate the input sequence.

In order to support different types of termination, two specific XFormsGI events
are introduced in addition to the standard XForms events: xformsgi-
constructionstep and xformsgi-constructionterminated. The first
one is sent after every major construction step. In case of capturing a line string, it is
sent any time a new point is defined. A further example is the input of a circle. After
the construction of the center an xformsgi-constructionstep is raised to
allow a special center mark to be set. During the processing of the xformsgi-
constructionstep event, the geometric data already captured is available in the
instance data.

The xformsgi-constructionterminated is raised after completion of the
input sequence. Then, all data are stored in the corresponding instance data element.

Construction by the input Element
The input element allows capturing standard geometries. Its type attribute defines
the geometry type. Possible values are point, circle, line-segment, rect,
polygon, and polyline. For convenience, the trigger control activating the
input can be placed as child to the input element.

Figure 7 illustrates an input control for capturing a line constructor.

<xfmgi:input
type = "line-segment"
model = "#geomodel"
ref = "#linedata "
state = "stopped">

<xforms:trigger>
<xforms:label>Start input</xforms:label >

</xforms:trigger>

</xfmgi:input>
Fig. 7. Example of the usage of the input control.

In contrast to the start trigger, there is no direct support for a stop trigger. One
possible solution would be to switch the trigger from “Start input” to “Terminate
input” by a script. Alternatively a client implementation could add the “Terminate
input” automatically to the menu or context menu when a geometric input is running.

Construction by the construct Element
The construct control is introduced as a convenience to facilitate the generation of
geometrical entities of the host language by user input sequences. In contrast to the
input element, which stores the input only in the instance data, the construction
control generates a new entity after completion of the input sequence. The new entity
is constructed according to a template specified by the template attribute and
placed as new child to the element of the host language denoted by the parent
attribute of construct.

Figure 8 illustrates this by using SVG as host language. The template attribute
refers to the image element of SVG.

<defs>
<image id = "img-template"

width = "60"
height = "40"
xlink:href = "tisch.svg" />

</defs>
<xfmgi:construct

type = "point"
template = "#img-template"
parent = "#new-elements"
state = "stopped">

<xforms:trigger>
<xforms:label>Start input</xforms:label >

</xforms:trigger>

</xfmgi:construct>
Fig. 8. Example construct element referring to an SVG element as template.

How the constructed geometry data is applied to the newly generated geometric entity
depends on the types of both, the construct and the template element. Consider
the example of an SVG image element. If the construct element has the type
point, the x and y coordinates of the image are set to the coordinates of the
constructed point. For a polyline, the image is placed on every vertex, and finally,
if it is of type rect, the image is scaled and positioned to fit inside the constructed
rectangle.

Selection
The select control allows the selection of elements by the user. Subsequently the
user may query information about the selected elements or modify them. Selected
elements are usually highlighted by changing some of their style attributes or by
adding decorations like a bounding box. Often a bounding box additionally displays

some “grapples” where the user can drag the bounding box to change the size,
position or orientation of the element. How the highlighting is performed, is – in
correspondence to the XForms specification – out of the scope of XFormsGI.

By default, only elements having an id may be selected. It is task of the host
language to control the selectivity of their elements. This can be done by (extensions
to) the styling language (e.g. to Cascading Style Sheets) used in the host language like
it is proposed in [2].

The main attributes of the select control are described in Table 2.

Table 2. Attributes of the select element.

Attribute Description

ref
ref refers to the “selection set” in the instance data. The
selection set is represented as a space-separated list of the
identifiers of the selected elements.

type

type has alternatively the value single or multiple.
In the first case, at most one element can be selected. In
the second case, the selection set may contain an arbitrary
number of elements.

modifier Space-separated list of IDREFs referring to modify
controls; explained in Section 0.

Figure 9 depicts an example for the select control.

<xfmgi:select
type = "single "
model = "#geomodel"
ref = "/data/selected-elements"
modifier = "#modify-placement #modify-delete
state = "start-implicit"

/>
Fig. 9. Example select element.

Modification
The modify control can be used either standalone or in conjunction with a select
element to allow the modification of an existing graphical entity. Its main attributes
are described in Table 3.

Table 3. Attributes of the modify element.

Attribute Description

type

type defines the kind of modification that can be applied. It
has one of the following values:
move-vertex, move-edge, move, rotate, resize,
homogeneous-resize, or delete.

applyto

applyto has alternatively the value selected , when the
selected entity or entities should be modified, or, in the case
of a stand-alone modifier, it consists of a space-separated list
of IDREFs of the elements that are subject to the
modification operation.

description A description of the operation displayed to the user.

ref Reference to the instance data element that stores the
modified data.

Figure 10 shows an example of a selection control with three corresponding modify
controls. The modifier attribute of the select control allows the direct “routing” of
a selected element to one or more modification operations. A client may display the
bounding box with the appropriate “grapples” (e.g., for scale and rotation) to give a
hint to the user which modifications are possible. Figure 10 also depicts the
interpretation of those controls by our prototype implementation. The
description attributes are taken to be shown in a popup menu allowing the user
to choose one of the three modifications.

<xfmgi:select
type = "single "
modifier = "#modify-placement #modify-delete #modify-rotate"
state = "start-implicit"

/>

<xfmgi:modify id = "modify-placement"
type = "move-vertex"
applyto = "selected"
description = "Verschieben"

/>
<xfmgi:modify id = "modify-rotate"

type = "rotate"
applyto = "selected"
description = "Drehen"

/>
<xfmgi:modify id = "modify-delete"

type = "delete"
applyto = "selected"
description = "Löschen"

/>

<xfmgi:select
type = "single "
modifier = "#modify-placement #modify-delete #modify-rotate"
state = "start-implicit"

/>

<xfmgi:modify id = "modify-placement"
type = "move-vertex"
applyto = "selected"
description = "Verschieben"

/>
<xfmgi:modify id = "modify-rotate"

type = "rotate"
applyto = "selected"
description = "Drehen"

/>
<xfmgi:modify id = "modify-delete"

type = "delete"
applyto = "selected"
description = "Löschen"

/>
Fig. 10. Example of selection with corresponding modify elements.

3.2 Data Binding

XFormsGI uses the same data binding mechanism as XForms. Since geospatial data
refers to spatial reference systems, we have to extend the XFormsGI data binding
accordingly.

Coordinate Systems
In the context of GIS or LBS, we have to consider three coordinate systems:
• GPS-coordinates defining the current position (typically referenced by WGS’84

coordinates),
• the application reference system (e.g., a projected coordinate system), and
• the coordinate system of the host language.
The relation between the three systems can be described by two transformations T1
and T2 illustrated in Figure 11.

GPS
(WGS84)

T1

T2

Application
system

Host system

Fig. 11. Transformation chain.

The transformations are used in the following ways: GPS data (e.g., used to position a
cursor depicting the current location) is mapped into the host system by first applying
T1 and then T2. Visual construction or modification of an element by the user takes
place in the host coordinate system. When coordinates are displayed numerically to
the user or sent to the server for further processing, these coordinates have to be
transformed to the application system by the inverse of T2.

The SVG standard proposes to include information about the underlying
geographic reference system into an SVG document by adding a metadata element
containing an RDF description [11] of the coordinate reference system (see Section
7.12 “Geographic Coordinate Systems” in [12]). The coordinate system itself has to
be defined by the “OpenGIS Recommendation on the Definition of Coordinate
Reference Systems” [9]. This proposal leads to rather lengthy XML fragments.
Instead, we introduced a simple XFormsGI element to describe the two
transformations. The application system is identified by its EPSG number (see [5])
which establishes T1. The mapping T2 to host coordinates is described by a
transform attribute which has the same functionality as the SVG transform
attribute.

<xfmgi:coordinatereferencesystem
crs-id = "epsg:31467"
transform = "scale(1000,-1000) translate(-5308.5,-812)"

/>
Fig. 12. Example of the coordinatereferencesystem element.

Data Representation
If a coordinatereferencesystem element is present in the document, the
instance data collects two sets of corresponding coordinate representations. The data
is stored in two child elements of the reference element: the hostcoords and the
appcoords element. An example is depicted in Figure 13. The data itself is stored
as element content by a space-separated sequence of coordinates.

<data>
<xfmgi:hostcoords>27.2 -157.4<xfmgi:hostcoords>
<xfmgi:appcoords>8.19 53.14<xfmgi:appcoords>

</data>
Fig. 13. Example of coordinate data representing a single point.

The data representation according to the type of the geometric entity is
straightforward, see Table 4.

Table 4. Data representation for selected geometric entities.

Type Data Description

point x y Coordinates
line-segment x0 y0 x1 y1 Coordinates of start and end point

circle x y r Coordinates of center, radius

4 Sensors

Especially for mobile applications, the collection of data by sensors connected to the
device becomes more and more important. For this purpose it is essential that
XFormsGI supports this type of data capturing.

The sensor element is used to declare a “data source” which reads data from
measuring equipment like GPS-sensors, compasses, velocity sensors, gas sniffers,
barcode readers etc. The attributes of the sensor control are described in Table 5.

Table 4. Attributes of the sensor element.

Attribute Description

type Signifies the type of the sensor. The meaning of the other
attributes depends on this value.

source

Either the name of the communication port used by the sensor
– like e.g. COM1 and possibly further communication
parameters – or the URL of a file containing emulation data.
The source attribute may be omitted. In this case data is read
from the standard port configured by the client.

display-
element Reference to host element used to visualize the readings

cursor
For georeferenced sensors: Optional. An IDREF to a host
element used as a cursor to display the current location and
track direction.

speed-
arrow

For moving georeferenced sensors: Optional. An IDREF to a
host element used to track speed (by scaling) and direction
(may reference the same element as cursor).

mode

For geo-sensors: Optional. Any combination of following
modes: track-view: keep the view centered on the current
location; track-angle: cursor is rotated according to
current heading; track-velocity: the speed arrow is
scaled according to current velocity.

An example of a GPS sensor element is shown in Figure 14.

<xfmgi:sensor
type = "gps"
ref = "#gps-data"
source = "nmea2.txt"
cursor = "#gps-cursor"
speed-arrow = "#gps-speed"
mode = "trackview trackangle"
state = "stopped"

/>
Fig. 14. Example of sensor element.

Additionally, metadata produced by the sensor may be placed in the instance data
besides the coordinate information. For a GPS sensor, these may be height, date, and
quality information like number of visible satellites, and so on. For the representation
in the case of a GPS sensor, we choose the “way point element” wpt defined by the
GPS exchange standard GPX, see [4]. Figure 15 shows an example of such instance
data.

<xfm:instance>
<gps-data>

<xfmgi:hostcoords>8.19 -53.14</xfmgi:hostcoords>
<xfmgi:appcoords>8.19 -53.14</xfmgi:appcoords>
<gpx:wpt lat="8.190375" lon="53.132135">

<gpx:time>4-04-07T15:23:32.809Z</gpx:time>
<gpx:ele>62.100</gpx:ele>
<gpx:sat>4</gpx:sat>
<gpx:dhop>1.9</gpx:dhop>

</gpx:wpt>
</gps-data>

</xfm:instance>
Fig. 15. Example instance data for a GPS sensor.

5 Application

We outlined the concept of XFormsGI in the previous sections. In this section, we
will shortly present a prototype, which serves to validate the concepts and which
implements a specific XFormsGI user interface. The second objective is motivated by
the fact that XForms leaves the details of the user interface to the implementation.
The prototype has been developed as a mobile application running on a PocketPC
PDA. SVG is used as host language of XFormsGI. Apart from the visualization of
spatial data, the purpose of this application is the support for redlining and the input
and editing of simple graphical elements.

The dominating input device for PDAs is the stylus. Therefore, the prototype is
designed for supporting this type of input. The input and construct elements as
described in Section 3.1 are implemented for the geometric primitives point, line
segment, circle and polyline. Compared to the usage of a traditional mouse pointer on
a desktop computer, the stylus has several restrictions. The prototype takes these
specific characteristics into account. For example, the stylus lacks buttons and its
position is only tracked when it touches the screen. As a consequence, a PDA is not
able to distinguish between touches signifying for example the construction of a new
point and simple display of the movement of the current track position.

In addition, the manipulation of existing geometric elements is addressed by the
prototype. For example, it is possible to select one or more elements for deletion or
geometric manipulation. At the moment dragging, insertion and deletion of vertices of
a polyline are implemented. A GPS sensor element can be declared as described in
Section 4.

Figure 16 shows a screenshot of a graphical editor defined by XFormsGI controls.

Fig. 16. Example of a complete graphical editor.

The integration of GPS sensors has been used for a tourist application: a historic city
walk for the City of Oldenburg. This application offers the user historic (SVG and
raster) maps of Oldenburg, corresponding textual information and shows the current
position of the user by using the sensor element of XFormsGI. Figure 17 illustrates
this application.

Fig. 17. Historic city walk application for the City of Oldenburg.

6 Related Work

The following three standards are the currently most prominent frameworks for
developing form-based desktop and web applications:
• XUL is the XML User-Interface Language [7] developed by Mozilla. It allows the

development of platform-independent graphical user interfaces.
• XAML (Extensible Application Markup Language) [6] is an XML application

defined by Microsoft that allows the description of user interface similar to
XForms for defining controls and to SVG for describing the visual aspects of the
user interface. XAML is embedded into the broader framework .Net that provides
the technical infrastructure for data exchange and visualisation. However, XAML
is a proprietary standard and restricted to the next versions of the Windows
operating system.

• WebForms [13] is a standard related to HTML forms and XForms. However, it is
an extension to HTML forms that aims to simplify the task of transforming
XForms into documents that can be rendered on HTML Web browsers that do not
support XForms.

None of these standards support the input of geometric data. To the knowledge of the
authors, the proposed XFormsGI is the only framework allowing descriptive
definition for capturing geospatial and sensor data.

7 Conclusions

The presented XFormsGI framework allows the declarative definition of a graphical
editor that needs no or only a small amount of scripting. Such an editor could be used,
e.g., on a mobile device to collect field data. The representation by geographic
coordinates is taken into account so that the seamless integration with a back-end
application processing the captured data is possible.

For validating the concept of XFormsGI, a prototype has been implemented and
integrated into a mobile SVG client [1] running on a PocketPC PDA.

A further feature of XFormsGI is the integration of sensors. In case of using SVG
as host language for LBS, it is possible to make an SVG map location-aware by only
adding two XFormsGI elements.

Several aspects of XFormsGI are still under development:
• In the current version, it is not possible to confine newly constructed points to

predefined areas. This may lead to errors and inconsistent data. It would be
desirable to have a means to define geometric input restrictions.

• In general, the construction of a new geometry is influenced by other geometries.
As examples, consider the vertex of a building that has a certain distance from a
given point, or the location of an accident on a road. In the simplest case, a new
point could be snapped onto a given point. In analogy to the question of
“selectibility” discussed in Section 3.1, this also requires extensions to the styling
language used for the host document.

• In the context of sensors, a general method to map sensor measurements to element
attributes of the host language is needed.

Acknowledgements
This work was funded by the Ministry for Research and Culture of Lower Saxony by
the program “Praxisnahe Forschung und Entwicklung an niedersächsischen
Fachhochschulen“ and the German Federal Ministry for Education and Research by
the program „FH3 Angewandte Forschung an Fachhochschulen im Verbund mit der
Wirtschaft“. This support is gratefully acknowledged.

References

1. Brinkhoff, T., Weitkämper, J.: Mobile Viewers based on SVG±geo and XFormsGI.
Proceedings 8th AGILE Conference on Geographic Information Science, Estoril, Portugal
(2005) 599-604

2. Brinkhoff, T.: Towards a Declarative Portrayal and Interaction Model for GIS and LBS.
Proceedings 8th AGILE Conference on Geographic Information Science, Estoril, Portugal
(2005) 449-458

3. Fettes, A., Mansfield, P.A.: Creating a Graphical User Interface in SVG. Proceedings 3rd
Annual Conference on Scalable Vector Graphics, Tokyo, Japan (2004)

4. GPX: The GPS exchange format. http://www.topografix.com/gpx.asp
5. International Association of Oil & Gas Producers, Surveying & Positioning Committee:

EPSG Geodetic Parameter Dataset. http://www.epsg.org/
6. Microsoft MSDN: XAML Overview. http://windowssdk.msdn.microsoft.com/

library/default.asp?url=/library/en-us/wpf_conceptual/html/a80db4cd-dd0f-479f-a45f-
3740017c22e4.asp

7. Mozilla.org: XML User Interface Language (XUL). http://www.mozilla.org/projects/xul/
8. Open Geospatial Consortium (OGC): OpenGIS Geography Markup Language (GML)

Implementation Specification, Version 3.1.1, OGC 03-105r1 (2004)
9. Open Geospatial Consortium (OGC): Recommended XML/GML 3.1.1 encoding of

common CRS definitions, OpenGIS Recommendation, OGC 05-011 (2005)
10. W3C: HTML 4.01 Specification, W3C Recommendation, 24 December 1999.

http://www.w3.org/TR/html401
11. W3C: Resource Description Framework (RDF). http://www.w3.org/RDF/
12. W3C: Scalable Vector Graphics (SVG) 1.1 Specification, W3C Recommendation 14

January 2003. http://www.w3.org/TR/2003/REC-SVG11-20030114/
13. W3C: Web Forms 2.0, W3C Member Submission, 11 April 2005.

http://www.w3.org/Submission/web-forms2/
14. W3C: XForms 1.0 (Second Edition), W3C Recommendation, 14 March 2006.

http://www.w3.org/TR/2006/REC-xforms-20060314
15. W3C: XForms – The Next Generation of Web Forms. http://www.w3.org/MarkUp/Forms/
16. W3C: XHTML 1.0 The Extensible HyperText Markup Language (Second Edition), W3C

Recommendation, 26 January 2000, revised 1 August 2002. http://www.w3.org/TR/xhtml1

