
Abstract

Benchmarking spatiotemporal database systems requires
the generation of suitable datasets simulating the typical be-
havior of moving objects. Previous approaches do not consid-
er that in many applications the moving objects follow a given
network. In this paper, the most important properties of net-
work-based moving objects are presented. These properties
are the basis for specifying and developing a new generator
for spatiotemporal data. This generator combines a real net-
work with user-defined properties of the resulting dataset. A
framework for using and promoting the generator exists.

1 Introduction
One of the most challenging applications of state-of-the-art

technology is the field of traffic telematics, which combines
telecommunication and computer science in order to establish
traffic information and assistance services. Many current and
future traffic telematics services need the management of
large sets of spatial objects moving within a street network [1].

The support of motion requires that the database system ef-
ficiently organizes moving objects. Therefore, the manage-
ment of spatiotemporal data is one of the most vivid research
activities in these days [5]. One important task is the prepara-
tion and use of well-defined test data and benchmarks en-
abling the comparison of data structures and algorithms de-
signed for spatiotemporal database systems.

In this paper, which is a short version of [2], the generation
of spatiotemporal data is based on a network. The presented
requirements to the generation of spatiotemporal data are
based on the experience of the author while he was working
for a company in the field of traffic telematics. However, it is
not the goal of the paper to demonstrate (e.g. in a case study)
that the data computed by the presented generator exactly ful-
fill the requirements of a specific application. Instead, a frame-
work is presented where the user defines the exact behavior of
the generator; such an approach allows considering the char-
acteristics of a wider range of applications.

2 Related work
The experimental investigation of spatiotemporal database

systems is a rather new field. Moving objects are represented
by a set of instances consisting of one object identifier obj.id,
several locations obj.loci and additional time stamps obj.timei.

For investigating spatiotemporal access methods, Theodor-
ides, Silva, and Nascimento [8] have proposed the GSTD al-
gorithm. Starting point is an arbitrary distribution of the ob-

jects. These objects are moved (and their size are changed) by
using random functions, which can be parameterized. The re-
sult are sets of objects looking a little bit like moving and
shape-changing clouds. In order to “create more realistic
movements”, Pfoser and Theodorides [3] have introduced a
new parameter for controlling the change of direction. In ad-
dition, they use rectangles for simulating an infrastructure;
each moving object has to be outside of the rectangles.

An application modeling fishing boats motivated Saglio's
and Moreira's work [4]. They stress, “real-world objects do not
have chaotic behaviors”. Therefore, the objects have to ob-
serve the environment around them. Furthermore, they intro-
duce object types, which allow modeling different behavior.
In order to generate smoothly moving objects, objects of one
class may be attracted or repulsed by objects of other types.

None of the above approaches uses a network for restrict-
ing the movement of objects.

3 The behavior of moving objects
A network often channels traffic. This observation holds

for street traffic as well as for other means of transport. In con-
sequence, almost no traffic can be observed outside of a net-
work: (1) Moving real-world objects often follow a network.

In the most cases, a moving object tries to use the fastest
path to its destination. Therefore, it uses a path, which is the
fastest or not far away from the fastest path: (2) Most moving
objects use a fast path to their destination.

Typically we find connections of different types in a net-
work. In a street network, e.g., we find different street classes.
The class of a connection has direct influence to the motion of
objects: 1. The number of objects moving on a connection de-
pends on this class; a low-class connection restricts the num-
ber of objects to a low value whereas a high-class connection
attracts a considerably higher number of objects. 2. The speed
of the objects is influenced by the class of the connection:
high-class connections generally allow a higher speed than
low-class connections. Also a speed limit in a country can be
modeled by the classification of the connections. (3) Most net-
works consist of classified connections, which have impact
on the number and on the speed of moving objects.

The speed and number of moving objects are also influ-
enced by other moving objects. Traffic jams are a common ex-
perience: If the number of vehicles using a street exceeds a
threshold, the maximum and the average speed of the objects
will decrease. The threshold depends on the capacity of the
connection, which is in general dependent on the class of the

Generating Network-Based Moving Objects

Thomas Brinkhoff
Institute of Applied Photogrammetry and Geoinformatics (IAPG)

Fachhochschule Oldenburg/Ostfriesland/Wilhelmshaven (University of Applied Sciences)
Ofener Str. 16/19, D-26121 Oldenburg, Germany

tbrinkhoff@acm.org, http://www.fh-oldenburg.de/iapg/personen/brinkhof/index.html

Published in: Proceedings 12th International Conference on Scientific and Statistical Database Management
Berlin, Germany, July 26-28, 2000, IEEE Computer Society Press



connection: (4) The number of moving objects influences the
speed of the objects if a threshold is exceeded. This threshold
depends on the class of the connection.

The traffic also influences the paths of the objects. An ex-
ample are detours which a driver may use if a traffic jam oc-
curs: (5) Other moving objects influences the path of a mov-
ing object if the speed on a connection decreases.

There exist further impacts on the number of moving ob-
jects: For example, rush hours depend on the time of day and
the day of week. Holiday periods are another example. (6) The
number of moving objects is a time-dependent function.

Special weather conditions may decrease the maximum
speed of (some) moving objects. Extended moving spatial ob-
jects allow modeling such effects: (7) The speed of moving
objects is also influenced by a spatial or spatiotemporal func-
tion, which is independent of the network and of the objects
moving on the network.

The maximum speed of a moving object especially depends
on its class. For example, private cars generally have a higher
maximum speed than trucks. The maximum speed of trucks
depends on their weight category. Note that other restrictions
(e.g. statement 3) may cause that an object will never reach its
speed limit. (8) Moving objects belong to a class. This class
restricts the maximum speed of the object.

The eight statements presented in this section describe the
behavior of moving objects. They are motivated by the re-
quirements of applications from field of traffic telematics.
More motivating examples from other fields are presented in
[2]. These statements surely do not consider all possible as-
pects of the movement of objects, but the use of a network re-
quires observing the eight statements.

4 The network-based generation of data
According to statement 1, moving objects tend to follow a

predefined network. Therefore, the basic data structure for
generating spatiotemporal objects should be a network. In
principle, it is possible to generate a synthetic network. There
exist several reasons to use a real network. First, it is not a sim-
ple task to generate a realistic network. Second, the use of a
network from a real-world application supports the generation
of objects, which behave like the objects in this application.
And third, several providers offer real-world networks; exam-
ples are the SEQUOIA 2000 Storage Benchmark [6] and TI-
GER/Line files [7].

4.1 The modeling of time
One important aspect for generating spatiotemporal objects

is the modeling of time. First, we assume that a time period T
restricts the existence of a spatiotemporal object. T is bounded
by a minimum time tmin and a maximum time tmax. In real life,
time is continuous. However, for the generation of spatiotem-
poral objects we have to assume that the time period T is divid-
ed by tn+1 time stamps ti into tn time intervals [ti, ti+1). These
parameters are globally used for all objects in order to simplify
the generation process. 

4.2 Requirements to the network
Each edge belongs to one edge class edgeClass(edge) and

for each edge class a maximum speed edgeClassMaxSpeed

(edgeClass) is (user-)defined (statement 3). The actual maxi-
mum speed on an edge edgeMaxSpeed(edge) has an individual
value equal or less than the maximum speed according to the
class of the edge:

edgeMaxSpeed(edge,time) ≤ 
edgeClassMaxSpeed(edgeClass(edge))

Furthermore, for each edge class a maximum capacity edge-
ClassCapacity(edgeClass) is user-defined. If the number of
objects traversing an edge during a time interval edgeUsage
(edge,time) is greater than the maximum capacity of the edge
class, the maximum speed on the edge is restricted by a further
limit described by a function deceleratedSpeed (statement 4):

edgeMaxSpeed(edge,time) ≤ deceleratedSpeed(edgeClass(edge), 
edgeUsage(edge,time)) ,

if edgeUsage(edge,time)) > edgeClassCapacity(edgeClass(edge))
The dependence between deceleratedSpeed and its parameters
is user-defined. Each edge includes a constant attribute edge-
Class and a varying attribute edgeUsage. Furthermore, each
edge has a time-independent spatial location loc.

4.3 Requirements to the moving objects
Each moving object belongs to an object class objClass

(obj) and for each object class a maximum speed objClass-
MaxSpeed(objClass) is (user-) defined (statement 8). The
speed of an object on an edge objSpeed(obj,edge,time) is re-
stricted by the maximum speed of its object class and the max-
imum speed on the edge:

objSpeed(obj,edge,time) ≤ objClassMaxSpeed(objClass(obj))
objSpeed(obj,edge,time) ≤ edgeMaxSpeed(edge,time)

Each object requires an (non-changing) attribute objClass.

4.4 External objects
We can distinguish different types of external objects re-

quired by statement 7:
 • External objects, which exist over the whole time, and oth-

ers, which are created at time1 and deleted at time2.
 • Static and moving external objects.
 • External objects with a static shape and external objects,

which change their spatial extension over the time.
Basic properties of external objects are their position and ex-
tension area(extObj,time). It will be assumed that a rectangle
describes this area. The percentage, by which the speed in the
area should decrease (decreasingFactor), depends on the class
of the external object. Now, a further limit to the maximum
speed on an edge can be determined:

edgeMaxSpeed(time,edge) ≤ 
edgeClassMaxSpeed (edgeClass(edge)) · 
minimum ({decreasingFactor(objClass(extObj))

with intersection(loc(edge),area(extObj,time)) <> Ø})

4.5 Computing the motion
According to statement 6, the number of moving objects is

a time-dependent function. In order to fulfill this requirement,
the creation of new moving objects is controlled by a function
numberOfNewObjects(time), which computes the number of
new objects for a time stamp. A moving object “dies” when it
arrives at its destination or after the maximum time is reached.

The moving objects should follow a network (statement 1).
Therefore, it is necessary to determine a starting node from the



network. In the following, the network-based approach is pre-
sented for computing starting nodes; other approaches can be
found in [2]. The idea is to select a node by using a one-dimen-
sional distribution function. Assuming a uniform distribution,
each node is selected with the same probability. In this case,
the distribution of the starting nodes is correlated to the density
of the network.The starting node of a moving object is com-
puted by the function computeStartingNode(time).

An obvious approach to compute the destination of a mov-
ing object is to use the network-based approach again. Howev-
er, this leads to non-satisfying results: A computation of the
destination independently of the starting node leads to an un-
controlled distribution of the lengths of the paths. However, in
real applications this distribution is not arbitrary but correlates
to distinct regularities. In cities for example, short drives pre-
dominate. The (average) length of routes often correlates to the
type of the moving object; e.g. trucks often have longer drives
than small private cars. Another influencing factor may be the
starting time. Therefore, the length of a route is determined by
a user-defined function computeLengthOfRoute(time,obj-
Class) in a first step. In the second step, the destination node
has to be determined by the function computeDestination-
Node(time, startingNode,length).

Each object obj moves between two time stamps ti and ti+1
from its actual position obj.loci to its new position obj.loci+1
according to its computed route. In general, these positions do
not match with the nodes of the network. The generator logs
these positions. For the edges traversed between two time
stamps ti-1 and ti, the number of traversing objects (edge-
Usage) is decremented and for the edges traversed now, this
number is increased.

According to statement 2, the route computation should try
to find a fast path to the destination following the connections
of the given network. This can be achieved by using a tradi-
tional routing algorithm considering the resulting speed of an
object (objSpeed) by weighting the edges.

Until now, the approach assumes that the speed of an object
on an edge does not change between the starting and reaching
the destination. However, this assumption contradicts the
statements 4 and 5. One solution to solve this contradiction is
to compute a new route at each time stamp. However, such an
approach would require a huge computing power for the gen-
eration of moving objects and should therefore not be consid-
ered as a good solution. Furthermore, that approach is not re-
alistic for a real-world application. In general, we can distin-
guish two situations where a new “computation” of a route is
triggered: 1. by an external event (e.g. a message of the radio
traffic service) or 2. by a strong deviation of the actual speed
from the expected speed (e.g. if the car is in a traffic jam). In
both cases, the moving object (or its driver) may compute a
different route if some time has passed since the last computa-
tion. In order to simulate this behavior, two boolean functions
are introduced: The user-defined function computeNewRoute-
ByEvent (time, timeOfLastComputation) allows simulating ex-
ternal events. In a simple version it may return “true” if time
minus timeOfLastComputation is larger than a given thresh-
old. Another function computeNewRouteByComparison (time,
timeOfLastComputation, actualSpeed, expectedSpeed) allows

simulating the reaction in the case of a strong deviation be-
tween the actual speed and the expected speed.

5 The framework
The generation of network-based spatiotemporal data re-

quires the following steps:
1. Loading the network from simple binary files. A tool exists

which allows converting TIGER/Line Files [7].
2. The definition of the required user-defined functions and

parameters as they are described in section 4.
3. The computation of the objects and their moves.
4. The report of the generated data into user-defined text files.

In order to simplify the definition of the user-defined func-
tions and parameters, the generator supports an ad-hoc vis-
ualization of the generated data. 

We have built up a Java-based framework for performing
these four steps. The web site http://www.fh-oldenburg.de/
iapg/personen/brinkhof/generator.html has been prepared
which allows downloading the generator, its documentation,
network files and examples for user-defined functions and pa-
rameters. An applet, which can be used via the Internet, dem-
onstrates the use of the generator and visualizes the computed
moving objects.

Performance tests have shown that the generator computes
large data sets within a reasonable time using a Java interpreter
on a standard personal computer (for details see [2]).

6 Conclusions and future work
In this paper, a new generator for spatiotemporal data was

presented. This generator combines a real network with user-
defined properties of the resulting dataset.

Future work consists of the support of time-scheduled con-
nections and of 3D-objects. Also the web site for promoting
the generator should be developed further.

7 References

[1] Brinkhoff T.: “Requirements of Traffic Telematics to Spatial
Databases”. SSD 1999, Hong Kong, LNCS 1651, Springer, pp.
365-369.

[2] Brinkhoff T.: “A Framework for Generating Network-Based
Moving Objects”. Technical Report of the IAPG, FH Olden-
burg/Ostfriesland/Wilhelmshaven, May 2000, http://www.fh-
oldenburg.de/iapg/personen/brinkhof/TBGenerator.pdf

[3] Pfoser D., Theodoridis Y. : “Generating Semantics-Based Tra-
jectories of Moving Objects”. Intern. Workshop on Emerging
Technologies for Geo-Based Applications, Ascona, 2000.

[4] Saglio J.-M., Moreira J.: “Oporto: A Realistic Scenario Gener-
ator for Moving Objects”, DEXA Workshop on Spatio-Tempo-
ral Data Models & Languages, Florence, 1999, pp. 426-432.

[5] Sellis T.: “Research Issues in Spatio-temporal Database Sys-
tems”. SSD 1999, Hong Kong, LNCS 1651, Springer, pp. 5-11

[6] Stonebraker M., Frew J., Gardels K., Meredith J.: “The SE-
QUOIA 2000 Storage Benchmark”. SIGMOD 1993, Washing-
ton, DC, pp. 2-11.

[7] US Government Information & Maps Dep.: “TIGER/Line
Files”. http://govdoc.ucdavis.edu/MapCollection/tiger.html

[8] Theodoridis Y., Silva J.R.O., Nascimento M.A.: “On the Gen-
eration of Spatiotemporal Datasets”. SSD 1999, Hong Kong,
LNCS 1651, Springer, pp. 147-164.


