
1

Potentials for Improving Query Processing
in Spatial Database Systems

Hans-Peter Kriegel, Ralf Schneider, Thomas Brinkhoff

Institute for Computer Science, University of Munich
Leopoldstr. 11 B, W-8000 München 40, Germany

e-mail: {kriegel,ralf,brink}@informatik.uni-muenchen.de

Abstract:
Due to the high complexity of objects and queries and also due to extremely large data vol-
umes, spatial database systems impose stringent requirements on the performance of query
processing. For improving query performance the following two properties are an absolute
necessity: (i) a fast spatial access to the objects and (ii) a fast processing of geometric oper-
ations. It has been convincingly demonstrated and it is generally accepted that a fast spatial
access can only be achieved by integrating spatial access methods (SAMs) into spatial data-
base systems. However, the huge potential that SAMs open for global clustering in combi-
nation with set I/O, thus improving the performance of set-oriented access to large amounts
of objects, has rarely been investigated. Furthermore, SAMs must be exploited adequately
for improving expensive operations such as the spatial join. Property (ii), fast processing of
complex geometric operations, is achieved by the following two building blocks: approxi-
mations and decompositions. Good approximations provide an efficient filtering by avoiding
unnecessary access and operations on the exact representation. The decomposition of com-
plex spatial objects into simple components substitutes the expensive execution of a compu-
tational geometry algorithm for the complex object by multiple executions of simple and fast
computational geometry algorithms for simple components. In this paper, we investigate the
above mentioned potentials for improving the query performance in spatial database systems
in detail.

1 Introduction

The demand for using database systems in application areas such as graphics and image process-
ing, computer aided design as well as geography and cartography is considerably increasing. The
important characteristic of these applications is the occurrence of spatial objects. Contrary to busi-
ness applications, standard database systems are not suitable for spatial applications [Wid 91]. The
insufficient expressive power, e.g. of relational systems, leads to unnatural data models and to poor
efficiency in query processing. Various research groups have developed non-standard and spatial
database systems such as DASDBS [Pau 87], EXODUS [CDRS 86], GRAL [Güt 89] and POST-
GRES [SR 86] to eliminate these problems.

Due to the high complexity of spatial objects and queries and also due to extremely large data
volumes, spatial database systems impose stringent requirements on their storage and access meth-
ods with respect to query processing. In spatial query processing efficiency is the bottleneck. To
overcome this bottleneck, two main directions are obvious: First, we have to improve the retrieval
of spatial objects and second, we have to speed up geometric algorithms in order to answer com-
plex spatial queries efficiently.

2

The first goal can be reached using suitable spatial access methods (see [SW 92] and [GB 90]).
Such methods should efficiently support the selective spatial access to single objects as well as
set-oriented access to large sets of objects caused by large data requests from secondary storage.
In view of permanently increasing main memory sizes, the fast transfer of large, spatially adjacent
object sets becomes more and more important.

The second goal can be reached by using suitable objects representations in order to simplify
the complex geometric algorithms. On the one hand, time consuming algorithms can be avoided
by a geometric filter step based on object approximations [BKS 93a]. On the other hand, the
processing of these algorithms can be simplified and speeded up by object decomposition tech-
niques. Using object decompositions, geometric tests are applied only to components which are
much more efficient than testing the whole object [Kri 91] and [KHS 91]. To decide which com-
ponents are relevant for a particular test, a spatial access method has to organize the components
of one object with respect to their location and shape [SK 91].

In this paper, we will present several research directions where a high potential can be found for
substantial performance improvement of spatial query processing. We sketch the main concepts
which in our point of view have to be integrated into spatial database systems in order to improve
their query performance. The improvements are documented by experimental performance com-
parisons using real cartography data.

The paper is organized as follows. First, we take a closer look at the execution of spatial queries
and operations presenting the concept of multi-step query processing. In this section, we identify
the main building blocks offering a high potential for speed up. In section 2, the first concept - ge-
ometric filtering - is discussed in detail. Afterwards, we describe the necessity of efficient transfer
of the exact geometry from secondary storage to main memory and propose the concept of com-
bining set I/O and spatial access methods. The exact geometry processing supported by decompo-
sitions is the topic of section 5. The rest of the paper contains a detailed discussion of spatial join
processing. In particular, we investigate and evaluate spatial join processing supported by spatial
access methods. The paper concludes with a brief statement of our findings and some suggestions
for future work.

2 Multi-Step Spatial Query Processing

Spatial database systems are used in very different application environments. Therefore, it is not
possible to find a compact set of operations fulfilling all requirements of spatial applications. But
as described in [BHKS 93], spatial selections are of great importance within the set of spatial que-
ries and operations. They do not only represent an own query class, but also serve as a very impor-
tant basis for the operations such as the nearest neighbor query and the spatial join. Therefore, an
efficient implementation of spatial selections is an important requirement for good overall per-
formance of the complete spatial database system. The two main representatives of spatial selec-
tions are the point and the region query (see figure 1):

 • Point Query
Given a query point P and a set of objects M. The point query yields all the objects of M ge-
ometrically containing P (see figure 1(a)).

 • Region Query
Given a polygonal query region R and a set of objects M, the region query yields all the ob-
jects of M sharing points with R. A special case of the region query is the window query. The
query region of a window query is given by a rectilinear rectangle (see figure 1(b)). Both, the
window query and the region query are often called range queries.

3

Fig. 1. Examples for a point and a window query

For the efficient processing of spatial queries, we present a multi-step procedure (see figure 2). The
main goal of our spatial query processor is to reduce expensive steps by preprocessing operations
in the preceding steps which reduce the number of objects investigated in an expensive step. In
figure 2, expensive steps are marked with a “$”-symbol.

Fig. 2. Schematic diagram of multi-step spatial query processing

A spatial selection is abstractly executed as a sequence of steps: First, we scale down the search
space by spatial indexing. A spatial access method organizes pages containing sets of entries that
consist of a geometric key, an object identifier (ID) and a reference to the exact object geometry.
Due to the arbitrary complexity of real geographic objects, it is not advisable to build up an index
using the complete geometric description of the objects as a key. Instead, approximations of the
objects are used. Thus, the spatial access method is not able to yield the exact result of a query.
However, because of the high selectivity of spatial queries a high number of objects is filtered out.

P

(a)

R

(b)

candidates

spatial
index

candidates

false hits

geometry of answers

spatial query

query
processor

$

$

spatial

exact geometry
processor

geometric
filter

IDs of answers

hits false hits

I/O-transfer unit
for exact geometry

4

Pages containing results are transferred into main memory. If a page region fulfills the query
condition (e.g. the whole page region is contained in the query window), all entries of the page cor-
respond to correct answers of the query (hits). Otherwise, a page consists of entries which may ful-
fill the query. Therefore, we inspect these candidates using a geometric filter which tests the geo-
metric key (or further approximations of the object geometry) against the query condition. As a
result, we obtain three classes of objects: hits fulfilling the query, false hits not fulfilling the query
and candidates possibly fulfilling the query. Geometric Filtering is cheap because it is performed
on simple spatial objects and it saves query time because a lot of objects can be identified as false
hits without transferring the exact geometry into main memory.

Now, we have to distinguish two cases: In the first case, we are only interested in the object
identifiers. Then, the hits are a subset of the set of answers (in figure 2 case 1 is indicated by a
striped arrow). Only the candidates have to be transferred into main memory for further processing.
In the other case, we require the complete object geometry as an answer to the query. Therefore,
we need a transfer of the exact geometry of hits and candidates into main memory. The transfer of
exact geometry may be very expensive because the exact representation of an object can be large
(compare e.g. [BHKS 93]) and additionally for large window queries, large numbers of objects
have to be transferred. In window queries the transferred objects are spatially adjacent. A physi-
cally contiguous storage of spatially adjacent objects is necessary to support a fast set-oriented ac-
cess by the I/O-transfer unit.

The other expensive step is processing the exact geometry of an object. After filtering, we have
to investigate the remaining candidates. Using complex computational geometry algorithms, it is
finally decided whether a candidate fulfills the query or not.

Spatial access methods
Considering spatial selections in more detail, it turns out that generally a small and locally re-

stricted part of the complete search space has to be investigated. For an efficient scaling down of
the search space, it is essential to use spatial access methods in the first step of our spatial query
processor because high volumes of data have to be organized. Access methods as a part of the in-
ternal level of a database system are used to organize a dynamic set of objects on secondary stor-
age. One-dimensional access methods like B-trees or linear hashing are not suitable for geographic
database systems. For these systems, we have to provide data structures which organize the spatial
objects with respect to their location and extension in the data space. Because of the arbitrary com-
plexity of spatial objects, access methods for simpler two-dimensional objects like minimum
bounding rectangles are widely discussed in the literature, e.g. the grid file, the quadtree, the buddy
tree, the R-tree, and the R*-tree. Samet provides an excellent survey [Sam 90] of almost all of these
methods.

Simply stated, spatial access methods are based on point access methods using one of three tech-
niques [SK 88]: Clipping partitions the data space into disjoint regions. The objects are associated
with each of the regions they intersect and thus one object is stored in each of the corresponding
blocks. In general, the technique of clipping may degrade query performance substantially since
the number of objects (copies) to be stored increases which in turn increases the number of regions
and thereby increasing the number of copies - a vicious circle. The transformation technique views
an object as a point in some parameter space. Since transformations do not preserve the spatial
neighborhood of objects in the original space, and since the distribution of parameter points is ex-
tremely skewed, the query efficiency tends to be quite low. The third technique is overlapping re-
gions. In this technique each object is assigned to exactly one region. However, there may exist
several regions potentially containing the searched object.

Performance comparisons (e.g. [KSSS 89], [HS 92]) demonstrate that the well-known spatial
access methods do not significantly differ in performance.We favour the R*-tree [BKSS 90], an
improved variant of the well-known R-tree [Gut 84], because it is a simple, robust, and efficient
spatial access method. This has been demonstrated in tests [BKSS 90] and in a comparison with

5

other access methods [HS 92]. The R*-tree uses the technique of overlapping regions and demon-
strates that it is possible to organize spatial objects such that the overlap of the regions in the direc-
tory is extremely small. From our point of view, further research in spatial access methods will im-
prove the overall-performance of query processing only marginally. In other words there is no po-
tential for substantial performance improvements. Therefore, additional concepts have to be
integrated into a spatial database system for improving its query performance.

3 Geometric Filtering

As described above, spatial objects are organized and accessed by spatial access methods using ge-
ometric keys which maintain the most important features of the objects (position and extension).
The smallest aligned rectangle enclosing an object, the minimum bounding rectangle (MBR), is the
most popular geometric key. The MBR-approximation is unique and translational invariant but not
rotational invariant. It can be computed with a simple linear algorithm which determines the min-
imum and maximum extension of the object in x- and y-direction. Using the MBR, the complexity
of an object is reduced to four parameters. Inspecting the MBRs of the candidates against the spa-
tial query condition, we obtain three classes of objects: hits fulfilling the query, false hits not ful-
filling the query and remaining candidates possibly fulfilling the query (see figure 2).

Using MBRs provides a fast but inaccurate filter for the response set. The larger the area of the
MBR differs from the area of the original object, the more inaccurate is the geometric filtering, i.e.
the candidate set includes a lot of false hits and the number of identified hits is very small.

In order to get expressive and realistic results on the quality of the approximation when using
MBRs, we investigated simple polygons with holes of various real maps. To be as general as pos-
sible, we used maps from different sources with different resolutions. The data files contain natural
objects such as islands and lakes as well as administrative areas such as counties. Figure 3 depicts
the analysed maps.

Fig. 3. The analysed maps

In the literature, several alternatives are proposed to measure the quality of approximations. In our
application we are interested in measuring the accuracy of the geometric filter. The accuracy of the
filter step is maximized by minimizing the deviation of the approximation from the original object.
This deviation is measured by the false area of the approximation normalized to the area of the ap-
proximated object. Table 1 shows impressively that real cartography objects are only roughly ap-
proximated by MBRs.

min max µ σ/µ • µ is the average of false area
 • σ/µ is the standard variation normalized to µ
 • min and max denotes the minimum and the max-

imum deviation of the area of the MBR from the
area of the corresponding polygon occurring in
the map, respectively.

Europe 0.25 21.14 0.93 0.21

BW 0.20 5.01 0.93 0.18

Lakes 0.21 22.11 0.97 0.32

Africa 0.34 5.64 0.89 0.23

Tab. 1. False area of the MBR-approximation normalized to the area of the object

BW

Africa Lakes &
Islands

Europe

6

This investigation was the starting point to look for other approximations which have a better ap-
proximation quality than the MBR. Approximations of objects which are used for geometric filter-
ing should be simple to provide a fast filter (simplicity criterion) and they should have a high ap-
proximation quality (quality criterion) to reduce the number of false hits and to identify as many
final answers as possible. In our point of view only convex approximations which can be repre-
sented by a small number of parameters are suitable candidates. Therefore, we tested the rotated
minimum bounding rectangle (RMBR), the minimum bounding circle (MBC), the minimum bound-
ing ellipse (MBE), the convex hull (CH), and the minimal enclosing convex n-corner (n-C).

Rotated minimum bounding rectangle (RMBR)
If we give up the restriction to align the MBR to the axes and allow rotations, the approximation
quality of the MBR can be improved. Obviously, the resulting rotated MBR (RMBR for short) is
additionally rotational invariant. It can be represented by the four parameters of the bounding rec-
tangle and one more parameter that corresponds to the performed rotation. We use a simple algo-
rithm with time complexity O(n2) to compute the RMBR.

Minimum bounding circle (MBC)
The circle needs three describing parameters (x-coordinate and y-coordinate of the center of the
circle and the radius). The approximation with the minimum bounding circle is unique, transla-
tional invariant and rotational invariant. A deterministic linear algorithm was presented in
[Meg 83] to determine the MBC. In our tests we used a randomized algorithm with an expected
linear complexity [Wel 91] which is based on Seidel’s optimal linear algorithm [Sei 90]. A com-
parison of further methods can be found in [DF 91].

Minimum bounding ellipse (MBE)
Any two-dimensional ellipse is determined by 5 parameters. Usually the ellipse is described by a

symmetric matrix and the centre P = (p1, p2). The centre is the intersection of the semiaxis of

the ellipse and describes the position of the ellipse in the plane. The MBE-approximation is unique,
translational and rotational invariant. A deterministic O(n2)-algorithm for computing the minimum
bounding ellipse is presented in [Pos 84]. In our tests we used Welzl’s randomized algorithm
[Wel 91] which has an expected linear complexity.

Convex hull (CH)
An obvious and popular approximation for simple polygons is the convex hull. The construction
of the convex hull of a set of points is one of the best understood problems in computational ge-
ometry. We used Graham’s simple scan-algorithm [Gra 72] with time complexity O (n log n). The
construction of the convex hull of a simple polygon is possible in O (n) time [Mel 87]. The required
storage for the convex hull approximation is determined by the complexity of the object geometry
and may vary from object to object.

Minimum bounding n-corner (n-C)
To obtain a predefined constant storage requirement, it is possible to compute the minimum bound-
ing n-corner starting from the convex hull of the polygon. An algorithm to construct the n-C-ap-
proximation was proposed in [DB 83] for the first time. A detailed description and investigation of
this algorithm is presented in [Sch 93].

Figure 4 visualizes the selected approximations using Great Britain as an example. These ap-
proximations differ especially in the approximation quality and storage requirement. The convex
hull has the best approximation quality. The minimum bounding circle has the lowest storage re-
quirement. First steps of an analytical and qualitative evaluation of approximations can be found
in [Sch 92] and [Sch 93].

A B

B C

7

In [BKS 93a] we presented a detailed empirical investigation. The measured approximation qual-
ities were almost independent of the various tested maps. Let us emphasize that this result is very
interesting because we used maps from different sources with different resolutions (see figure 3).
A clear order of rank turned out. Naturally, the convex hull has the best approximation quality
(24 % false area), followed by the 5-corner (33 %), the 4-corner (44 %) and the rotated rectangle
(62 %). Compared to the minimum bounding rectangle (93 %), clear gains of approximation qual-
ity were obtained. Obviously, the more parameters are used for the representation of an approxi-
mation, the better is the approximation quality. The results show that the approximation quality of
the 5-corner is nearly the same as that of the convex hull. However, the storage requirement of con-
vex hulls varies extremely and is on the average much higher than the storage requirement of the
other approximations. The RMBR reduces the false area by 31 percentage points compared to the
MBR, although only one additional parameter is used. The 5-corner needs 6 additional parameters
compared to the MBR paying off in 60 percentage gain over the average false area of the MBR.
Summarizing, we can state that the 5-corner yields the best trade-off between additional storage
requirement and improvement of approximation quality.

In order to integrate the 5-corner in geometric filtering of spatial query processing, two different
ways can be followed. First, the common MBR remains the geometric key and the 5-corner is ad-
ditionally stored in the data pages of the SAM. The advantage of this approach is obvious. The ap-
proximation quality is improved and all the known SAMs based on MBRs can be used. Second,
we use the 5-corner as the geometric key and the MBR is not stored anymore. Doing this, we save
storage, but SAMs using the transformation technique are not suitable.

In [BKS 93a] we have shown that the 5-corner approximation can efficiently be organized in
the R*-tree, a spatial access method originally designed for bounding rectangles. The simplicity
and robustness of the spatial access method is preserved, because in the directory simple bounding

MBR MBC

MBE CH 4-C

RMBR

Fig. 4. Different presented approximations

8

rectangles are organized and only in the data pages more complex approximations are stored. Ob-
viously, in the filter step other approximations than the minimum bounding rectangle need more
page accesses when traversing the SAM because of their higher storage requirement and their
higher extension in x- and y-direction. However, the reduced number of false hits due to higher
approximation quality results in a substantial gain in the geometry processor by avoiding time in-
tensive computational geometry algorithms. This gain clearly exceeds the slightly higher access
cost.

4 I/O-Transfer of Exact Geometry

Most spatial access methods proposed up to now accommodate object approximations (e.g.
minimum bounding rectangles) or a small number of spatial objects in their data pages. However,
data pages storing spatially adjacent objects are distributed arbitrarily over the secondary storage.
Typical range queries require the contents of many data pages to be retrieved from the database.
This is much more expensive for arbitrarily distributed pages than for physically contiguous pages
because the search time of a page on disk is much higher than the transfer time and because phys-
ically contiguous pages can be transferred by one set-oriented disk access into main memory (see
[Wei 89]).

In [HSW 88], Hutflesz et al. face the problem of global clustering of data pages using a multi-
dimensional hashing scheme. The same concept is applied to minimum bounding rectangles in
[HWZ 91]. However, the global clustering is preserved only for approximations of objects. Fur-
thermore, this hash approach is not applicable to access methods with an arbitrary space partition-
ing scheme. In [BHKS 93], we demonstrated experimentally the necessity to integrate global clus-
tering into query processing if large range queries occur. We compared three models for storing
large sets of spatial objects:

 1. Storing the exact object geometry outside of the spatial access method, e.g. in a sequential
file. The main advantage of this scheme is the large number of approximations stored to-
gether in one data page. A fundamental drawback is the fact that the clustering just refers
to the object approximations and not to the objects themselves. Consequently, when pro-
cessing window queries, each access to an exact object geometry needs additional expen-
sive search time.

 2. Storing the exact object geometry inside the data pages of the spatial access method. Thus,
spatial neighborhood is physically preserved at the level of exact object geometry. Objects
within one data page are transferred into main memory just using one disk access. An es-
sential drawback of this approach is the low number of objects fitting into one page. As a
consequence, adjacent objects are often stored in different pages and clustering is restricted
by the page size which is about 4 kbyte.

 3. Our new approach, the scene organization, associates the geometry of spatially adjacent ob-
jects to sets of physically contiguous pages. These sets are derived from a slightly modified
R*-tree and are called scenes. A scene is described by a minimum bounding rectangle. The
geometric keys (and additional approximations) are organized in R*-trees as before. The
scene organization allows dynamic changes of the database, supports large range queries as
well as small queries, assures that a maximum scene size is not exceeded, and strives for a
stable average scene size and a high storage utilization. A detailed algorithmic description
of the scene organization is given in [BKS 93b]. A window query proceeds as follows: All
scenes intersecting the query window are determined. If the degree of overlap between the
scene and the query window is smaller than a heuristically determined query threshold, the
window query is processed using the mechanism depicted in figure 2. Otherwise, the scene
is completely transferred into main memory using the fast set-I/O [Wei 89]. Unfortunately,
a scene may contain a number of false hits unnecessarily transferred into main memory.
However, a relatively small number of false hits does not affect performance considerably,
since the time needed for searching a page exceeds drastically the time for transferring a

9

page. After transferring the scene into main memory, the query works as usual without the
transfer step after filtering.

In figure 5, the three organization models are depicted.

Fig. 5. Organization models for storing spatial objects

Realization of the scene organization
Spatial access methods are very efficient for point queries and small range queries because they
cluster objects in their data pages accordingly to their location in space. The idea of the scene or-
ganization is to cluster larger sets of spatial data on secondary storage in order to support large
range queries. Therefore, we have to combine sets of pages by a strategy which is based on an ef-
ficient space partitioning scheme. Additionally, for large spatial units the design of a scene organ-
ization has to fulfill the following important requirements:

 • Due to the changes in the spatial database, a scene organization must be dynamic.
 • We want to support large range queries as well as small queries. Therefore, we need direct

access to the scenes as well as a spatial index which supports an efficient spatial access to
single objects in the database.

 • For the I/O-system it is easier to handle cluster units of equal size. Consequently, we assume
that a maximum scene size exists. For achieving a predictable query behavior, we strive for
a stable average scene size. Another important goal is a high storage utilization.

Figure 6 depicts the schematic structure of our approach. We distinguish three parts: the scene de-
scriptions are stored on the first level. A scene description consists of a geometric representation
covering every spatial object of the corresponding scene. The scene description is supplemented
by a pointer to a data structure organizing approximations and by the absolute address of the scene
on secondary storage. The scene descriptions are organized in a data structure which is called scene
tree. The spatial access methods handling the approximations of the spatial objects are called ap-
proximation trees. The relative address of the spatial object in the scene is assigned to every ap-
proximation. The scenes store the spatial objects for which internal clustering is maintained. Each
scene is indexed by one approximation tree.

The R*-tree [BKSS 90] is a spatial access method that clusters sets of spatial objects or their
minimum bounding rectangles in its data pages. It uses a very efficient space partitioning scheme
which neither clips nor transforms the spatial objects. Due to its good performance and its robust-
ness, we take the R*-tree as a major component of our scene organization. We describe the scenes
by their minimum bounding rectangles and organize them by a scene tree based on the R*-tree. We
also use R*-trees as approximation trees. The approximation trees are necessary for two purposes:
The first task is to organize the approximations in order to support an efficient access for spatial
queries. Due to the efficient space partitioning scheme of the R*-tree, they are additionally used to
determine new scenes as basic units for physical clustering.

data pages...

...

... ...

model 1 model 2 model 3

...

SAM SAM
SAM

external representation

data pages

data pages

...

...

scenes

...

10

Fig. 6. Schematic structure of the scene organization (I)

In order to demonstrate the high potential of performance gains for large range queries when ap-
plying the scene organization, we carried out a detailed empirical performance comparison of the
three models using real test data.

We used real test data from the US Bureau of the Census [Bur 89] containing county borders,
highways, railway connections and rivers of four Californian counties. This database consists of
119,151 lines, each consisting of 2 to 349 points. Each co-ordinate is represented by a real number
of 8 Bytes. Altogether the database has a size of 15.9 MByte. The lines were approximated by using
minimal bounding rectangles.

We investigated the performance improvement of the scene organization in comparison to the
other two approaches. To compare the clustering of our scene organization with the other models,
the access cost for point queries is a suitable measure. In the scene organization the cost of point
queries is very close to the cost of the two other models. That means that the modifications of the
R*-tree have almost no effect on its space partitioning. In table 2, a comparison of the access cost
of the three models is presented by describing the speed up factor for query processing using model
2 and 3 in comparison to model 1. To investigate the performance of the models for large query
regions, we carried out four test series with different sizes of the query regions. Each series consists
of 464 quadratic window queries uniformly distributed over the data space covered by the objects.
The area of the query regions varies between 0.25% and 16% of the data space. The cost for model
1 is standardized to “1”. For the other two models the numbers describe the speed up factor for
query processing using these models. The average scene size for model 3 was 79,027 Bytes which
was the scene size yielding the best results where we averaged over the four different sizes of the
query windows.

To evaluate the performance of the three models, we need a measure for the access cost. The
time necessary for reading one page into main memory consists of the search time, i.e. the time
needed for locating the page on secondary storage, and the transfer time, i.e. the time needed to
transfer the data from secondary into main memory. If we normalize the cost for a transfer opera-
tion to 1, then in real magnetic disk drives the cost for a search operation is approximately 10
[PH 90]. Considering range queries, the access cost within the R*-tree is negligible in comparison
to the access cost of the exact object representation. Thus, in the following, we take into account
only the access cost for reading the exact object representation.

Level of scene descriptions

Level of approximations

physical clustering unit
(scene)

approximation trees

scene tree

. . . Level of spatial objects

11

Summarizing the results, we would like to point out the following statements:
 • Storing the exact object representation inside the data pages (model 2) speeds up query

processing by a factor of 12 to 15 in comparison to model 1 (using separate pages). The size
of the query regions has only a small influence on this factor. For the interpretation of the
results, one remark is important: The objects used for the tests are relatively small in com-
parison to the size of the data pages. Using larger objects, i.e. objects larger than one data
page, requires storing the exact representation outside of the data pages. As a consequence,
query performance of model 2 comes closer to the performance of model 1.

 • The new scene organization is the clear winner of the performance comparison. Even the
processing of small queries is performed considerably faster by this storage model. For small
queries, we have a speed up factor of about 30 (in comparison to model 1) which is increasing
to the impressive value of 148 for large queries.

 • Another important result is the fact that the optimal scene size is almost independent of the
query sizes. Therefore, using the scene architecture with a fixed scene size is beneficial to
queries of very different sizes. Furthermore, the flat form of the cost function guarantees a
considerable speed up of the query processing, even if the average size of the scene is varying
caused by insertions and deletions of objects.

 • Additionally, the scene organization efficiently supports small range queries. Even for point
queries the performance of our new approach is not worse than the performance of conven-
tional organization models.

Global clustering has rarely been investigated in the area of spatial access methods although dra-
matic performance improvements can be achieved by using suitable techniques. In order to speed
up set-oriented access to spatial objects for large range queries, we propose the scene organization,
a new technique for global clustering in spatial database systems. Using this approach, large por-
tions of the data are combined in scenes and spatially clustered on secondary storage. These scenes
can be organized dynamically by using an R*-tree. Each scene is indexed by a separate R*-tree
organizing the approximations of the spatial objects. Building up the scene organization, we main-
tain the clustering techniques of the R*-tree to a large extent in order to use the efficient space par-
titioning scheme of the R*-tree. For a fast transfer of scenes from secondary storage into main
memory, the scene organization assumes that a set-oriented I/O-manager is available in the under-
lying system.

In [BHKS 93], we presented the rough idea of the concept of a scene organization whereas in
[BKS 93b] a detailed algorithmic realization of the scene organization is proposed. We performed
the scene organization on top of the R*-tree. Based on an elaborated scene split, the scene organi-
zation is built up dynamically without global reorganization. The most important parameters for
efficient processing of large range queries (scene size and query threshold) are determined exper-
imentally.

5 Exact Geometry Processing

Geometric filtering is based on object approximation and therefore determines a set of candidate
objects that may fulfill the query condition. The geometry processor tests whether a candidate ob-
ject actually fulfills the query condition or not. This step is very time consuming and dominates

size of query windows (in% of data space) 0.25% 1% 4% 16%

1: Geometry outside of the data pages 1.0 1.0 1.0 1.0

2: Geometry inside the data pages 11.9 13.7 14.9 15.5

3: Scene organization 28.9 60.5 105.7 148.5

Tab. 2. Speed up factors for query processing using model 2 and 3 in comparison to model 1

12

spatial indexing and geometric filtering in many applications (see [BZ 91]). Algorithms from the
area of computational geometry are proposed to overcome this time bottleneck. Different special-
ized data structures and techniques, such as plane sweep or divide-and-conquer, are used to design
efficient algorithms for the different spatial queries and operations.

Due to the complexity of the objects on the one hand and the selectivity of spatial queries on the
other hand, it is useful to decompose the objects into simpler components because the decomposi-
tion substitutes complex computational geometry algorithms by multiple executions of simple and
fast algorithms. The success of such processing depends on the ability to narrow down quickly the
set of components that are affected by the spatial queries and operations. The performance com-
parisons in [KHS 91] demonstrate that decomposition techniques outperform the traditional unde-
composed representation up to one order of magnitude for high selectivity queries.

Consider a point-in-polygon test. For processing this test, an algorithm with linear runtime com-
plexity is necessary [PS 88]. This examination of complex polygons i.e. polygons with thousands
of vertices consumes a considerable amount of CPU time. On the other hand, only a small local
part of the object is actually relevant for the decision whether an object contains a point or not. This
leads to the idea of object decomposition. Applying this idea, the objects are divided into a number
of simple and local components, e.g. triangles, trapezoids, convex polygons, etc. (see figure 7).
During spatial query processing, only one or a small number of these components has to be
checked. In [KHS 91] and [Kri 91] the decomposition approach for simple polygons with holes is
presented and discussed in detail.

Fig. 7. Three decomposition techniques for simple polygons

Using object decompositions, geometric tests are applied only to components, e.g. trapezoids,
which is much more efficient than testing the whole polygon. To decide which components are rel-
evant for a particular test, we use again an R*-tree to organize the components of one object with
respect to their location and shape. In [SK 91] we proposed a new representation of a polygonal
object called TR*-tree that efficiently supports various types of spatial queries and operations. The
TR*-tree is a dynamic data structure that is persistently stored on secondary storage and is com-
pletely loaded to main memory for spatial query processing.

In our approach using TR*-trees, we support efficiently the average case of various types of
queries and operations in real applications where only one single representation of the objects is
used. We decompose in a preprocessing step the polygonal objects into a minimum set of disjoint
trapezoids using the plane-sweep algorithm proposed by Asano & Asano [AA 83]. However, we
cannot define a complete spatial order on the set of trapezoids that are generated by this decompo-
sition process. Thus, binary search on these trapezoids is not possible. Therefore, we propose to
use the R*-tree for the spatial search. Due to its tree structure, the R*-tree permits logarithmic
searching in the average case but due to the overlap within its directory, the search is not restricted
to one path, and thus logarithmic search time cannot be guaranteed in the worst case. The R*-tree
was designed as a spatial access method for secondary storage. In order to speed up the queries and
operations mentioned above, we developed the TR*-tree, a variant of the R*-tree, designed to min-
imize the main memory operations and to store the trapezoids of the decomposed objects as com-
plete objects without approximating them by minimum bounding rectangles.

The performance of the TR*-tree cannot be proven analytically because the TR*-tree is a data
structure that uses heuristic optimization strategies. Therefore, we are testing the performance of

triangels trapezoidsconvex polygons

13

the TR*-tree in an experimental analysis investigating real cartography data in a systematic frame-
work. First results are reported in [SK 91]. For example, a point query on objects with 2,500 ver-
tices is answered performing 20 point-in-MBR-tests and 3 point-in-trapezoid-tests. Compared to a
linear point-in-polygon-test from the area of computational geometry, we have a speed up by a fac-
tor of 45. In [BKSS 93] we tested the TR*-tree approach to answer the spatial query whether two
polygons are intersecting or not. The polygons had on the average about 1300 vertices. In compar-
ison to a plane sweep algorithm, we measured performance improvements of a factor of 50.

These results document impressingly that it is worth to integrate the approach of decomposition
into spatial query processing. Further research on the trade-off between the complexity of the com-
ponents and their number is reported in [SK 93].

6 Spatial Join Processing

In a database system, we can distinguish between two different types of queries. The one type of
queries, called single-scan queries, requires at most one access to an object and therefore, the ex-
ecution time is at most linear in the number of objects stored in the corresponding relation. Window
queries are prime examples for single-scan queries in a spatial database system. In the previous sec-
tions, we discussed in detail the potential for improving query processing of single scan queries.
The other type of queries are multiple-scan queries where objects have to be accessed several times
and therefore, execution time is generally not linear but superlinear in the number of objects. For
example, a join operation in a relational database system is a multiple-scan query.

The most important multiple-scan query in a spatial DBS is the spatial join [Ore 86]. The spatial
join can be used for implementing the map overlay in a GIS efficiently. The importance of the spa-
tial join is comparable to the one of the natural join in a relational database system. The spatial join
operation combines objects from two spatial relations according to their geometric attributes, i.e.
their geometric attributes have to fulfill a spatial predicate. For example, consider the spatial rela-
tion Forests (Id, Name, FRegion) where the geometric attribute FRegion represents the borders of
forests. The query “find all forests which are in a city” is an example of a spatial join on relations
Forests and Cities. Here, the spatial predicate is whether a forest intersects a city.

Definitions
A relational θ-join of two relations A and B on columns i and j, denoted by , combines

those tuples where the i-th column of A and the j-th column of B fulfill the predicate θ. The most
important join is the equijoin where θ is equality. A join is called spatial join if the i-th col-
umn of A and the j-th column of B are sets of spatial objects and if θ is a spatial predicate [Gün 93].
The reader may think of the spatial objects as lines representing rivers, railway tracks and high-
ways or as polygons representing a part of the surface of the earth. Spatial predicates may be inter-
section, containment or distance predicates.

The most important spatial join is the intersection join where both columns are of a spatial type
and θ is the intersection. In this section, we discuss only the intersection join. However, many of
our results can be easily transferred to spatial joins using other spatial predicates. In an intersection
the non-spatial attributes are not relevant for the join processing. Therefore, we omit non-spatial
attributes and join two sets A = {a1,…,an} and B = {b1,…,bm} of spatial objects.

In the following, we assume that the spatial access method maintains for each spatial object an
entry which is (at least) a tuple (Id(a), Mbr(a), Ref(a)) where Id(a) is the unique identifier of the
spatial object a in the database, Mbr(a) is the minimum bounding rectangle of a used in the SAM
as geometric key, and Ref(a) refers to the exact geometry of the object a. Now, we can distinguish
the following variants of the intersection join:

 • MBR-join: Compute all pairs (Id(ai), Id(bj)) with Mbr(ai) ∩ Mbr(bj) ≠ ∅
 • object-join: Compute all pairs (Id(ai), Id(bj)) with ai ∩ bj ≠ ∅

A B
iθj

A B
iθj

14

Contrary to relational joins, these two variants compute only the identifiers of the objects. The rea-
son is the complexity of a spatial object: only when the user or the application really needs the ge-
ometry of an object, it should be transferred into main memory. Note that the MBR-join can be
used for implementing the filter step of the object-join. This explains the importance of the MBR-
join. The object-join itself is the base for computing the intersection overlay of the spatial objects:

 • intersection overlay: Compute ai ∩ bj with ai ∩ bj ≠ ∅
The intersection overlay does not only compute the identifiers of the objects in the response set

but also the resulting objects. In this section, we restrict our considerations to the MBR-join. Al-
though the MBR-join is less complex than other types of spatial joins, almost all methods designed
for an efficient join processing of non-spatial relations, see [ME 92] for a survey, cannot be effi-
ciently used for MBR-joins. Using the simple nested loop approach, the MBR of all spatial objects
of the one relation has to be checked against the MBRs of all objects of the other relation. Since
we consider very large relations of spatial objects, the performance of the nested loop algorithm is
not acceptable. Hashed-based join algorithms are suitable only for natural and equijoins but not for
any type of spatial join. Another approach is similar to a sort-merge join. Here, the MBRs of spatial
objects are sorted according to their spatial proximity. This approach for processing an MBR-join
may be considered if there is not already a spatial index on the spatial relations. However, our basic
assumption is that a spatial access method efficiently supports queries on the set of MBRs (and
therefore, indirectly on the spatial relations). Thus, we are interested in exploiting spatial access
methods for an efficient processing of MBR-joins.

There are several other approaches for performing natural joins using multidimensional point
access methods, e.g. grid files [Bec 92] and kd-trees [HNKT 90]. These methods can be used for
MBR-joins, if rectangles are transformed to higher dimensional points. However, the most serious
disadvantage is that the use of transformation does not preserve proximity.

In the following, we restrict our considerations to R-trees [Gut 84], particularly R*-trees
[BKSS 90], used as the underlying spatial access method for processing MBR-joins. It has been
shown in [BKSS 90] that the R*-tree is one of the most efficient members of the R-tree family with
respect to several single-scan queries. Since several geographic information systems, e.g. Inter-
graph’s GIS, and DBSs, e.g. Postgres [SRH 90], use R-trees as their basic spatial access method,
there is also considerable interest in efficient join algorithms using R-trees.

An R-tree is a B+-tree like access method that stores multidimensional rectangles as complete
objects without clipping them or transforming them to higher dimensional points. A non-leaf node
contains entries of the form (ref, rect) where ref is the address of a child node and rect is the min-
imum bounding rectangle of all rectangles which are entries in that child node. A leaf node contains
entries of the same form where ref refers to a spatial object in the database and rect is the minimum
bounding rectangle of that spatial object. Let us mention, that storing spatial objects instead of ref-
erences in leaf nodes do not affect the basic algorithms of the R-tree. Given an entry E of a node,
E.rect and E.ref denote the corresponding rectangle and reference, respectively.

Let M be the number of entries that fit in a node and let m be a parameter specifying the mini-
mum number of entries in a node, 2 ≤ m ≤ M/2 . An R-tree satisfies the following properties:

 • The root has at least two children unless it is a leaf.
 • Every node contains between m and M entries unless it is the root.
 • The tree is balanced, i.e. every leaf node has the same distance from the root.
 • Every rectangle of a non-leaf node covers all rectangles in its corresponding child node.

In general, the rectangle is even the minimum bounding rectangle.
Since one node of the data structure corresponds exactly to one page on secondary storage, we will
use both terms synonymously in the following.

An R-tree is completely dynamic; insertions and deletions can be intermixed with queries with-
out any global reorganization. Although data entries are grouped together according to the location

15

of their rectangles in space, R-trees have to allow overlap in directory nodes, i.e. rectangles of dif-
ferent entries may have a common intersection. Since a high overlap results in poor query perform-
ance, one of the most important design goals of the R*-tree was the reduction of overlap. Similar
to B-trees, R-trees guarantee that storage utilization is at least m/M and that the height grows log-
arithmically in the number of data records. The reader is referred to the original papers [Gut 84]
and [BKSS 90] for a more detailed discussion.

Cost and Performance Measures
For an R*-tree R we use the following notations:

|R|dir (|R|dat) = number of directory (data) pages
||R||dir (||R||dat) = number of directory (data) entries

Obviously, the total number |R| of pages is given by |R|dat + |R|dir. Analogously, the total number
||R|| of entries is given by ||R||dat + ||R||dir.

Now, let us consider two sets of rectangles each of them being organized by an R*-tree. In the
following, we call the R*-trees R and S. As a performance measure for the execution time of a
MBR-join between R and S, we use CPU-time as well as I/O-time. Only the number of disk ac-
cesses is not sufficient to measure execution time of joins, particularly of spatial joins, appropri-
ately. Already in case of natural joins, the number of tests for the join condition has essential in-
fluence on the execution time. To check the join condition in case of spatial joins is far more ex-
pensive than in case of natural-joins. Therefore, a good measure for performance consists of both,
the number of disk accesses and the number of comparisons.

The I/O-time is usually measured in the number of disk accesses required for performing the
join. A similar performance measure is used in the following. Since the I/O-time for reading and
writing a page slightly depends on the size of the page, we differentiate between the positioning
cost (including seek cost and rotational latency) and transfer cost.

In order to reduce I/O-operations, a buffer can be used. Independent of the size of a buffer, any
processing of an MBR-join will read each required page at least once into main memory. If all
pages are required for a join, a lower bound for the I/O-cost is |R|dat + |S|dat. This result is well-
known as the minimum cost for a natural-join using two B-trees. In case of R*-trees, however, it
might be possible that a MBR-join requires less than |R|dat + |S|dat pages. The reason is that the
union of all directory rectangles with the same distance from the root of the R*-tree does not com-
pletely cover the underlying data space.

The CPU-time of an MBR-join is measured in the number of floating point comparisons. Com-
parisons are required for checking the join condition, i.e. whether two rectilinear rectangles inter-
sect. Note, that for a pair of rectilinear rectangles four comparisons are exactly required to deter-
mine that the join condition is fulfilled. If the rectangles do not fulfill the join condition, less than
four comparisons might be required. There are many other operations affecting CPU-time, but in
general they do not asymptotically influence CPU-time.

An analytical investigation of the execution time of an MBR-join performed with R*-trees seems
to be almost impossible. Not surprisingly, there are only a few analytical results known for spatial
access methods. Most of these analytical results are restricted to multidimensional points, to sin-
gle-scan queries, and to uniformly distributed data set very rarely occurring in real applications.
Therefore, in [BKS 93c] we investigate MBR-joins in an empirical comparison using cartographic
maps from real applications.

We consider two files with 131,461 and 128,971 line objects in an area of California. The data
is drawn from the TIGER/Line files used by the US Bureau of the Census (1989). The first map
represents streets, whereas the second map represents rivers and railway tracks. For each of the
maps, the minimum bounding rectangles of the polygonal objects are stored in an R*-tree. The join
of R and S results in a response set of 86,094 pairs of intersecting rectangles. For various page sizes,
the most important properties of R*-trees R and S are reported in table 3.

16

Tab. 3. Properties of R*-trees R and S

The conventional approach of an MBR-join for R*-trees
The basic idea of performing a MBR-join with R*-trees is to use the property that directory rectan-
gles form the minimum bounding rectangle of the data rectangles in the corresponding subtrees.
Thus, if the rectangles of two directory entries ER and ES do not have a common intersection, there
will be no pair (rectR, rectS) of intersecting data rectangles where rectR is in the subtree of ER and
rectS is in the subtree of ES. Otherwise, there might be a pair of intersecting data rectangles in the
corresponding subtrees. In the following, we assume that both trees are of the same height. The
case of joining R*-trees of different height is discussed in [BKSS 93]. The following algorithm
presents the conventional approach:

MBR_J1 (R,S: R_Node); (* height of R is equal height of S *)
FOR (all ES ∈ S) DO

FOR (all ER ∈ R with ER.rect ∩ ES.rect ≠ ∅) DO
IF (R is a leaf page) THEN (* (S is also a leaf page) *)

output (ER,ES)
ELSE

ReadPage(ER.ref); ReadPage(ES.ref);
MBR_J1(ER.ref,ES.ref)

END
END

END
END MBR_J1;

Here, it is assumed that R_Node is the type of a node in an R*-tree and that each node accommo-
dates a collection of entries. As previously introduced, an entry E consists of a pointer ref and a
rectangle rect. A procedure ReadPage is assumed to read the required page from the buffer or, if
the page is not in the buffer, from secondary storage. The algorithm recursively traverses both of
the trees in top-down fashion.

The R*-tree makes use of a so-called path buffer accommodating all nodes of the path which
was accessed last. In order to be more efficient with respect to I/O, an additional buffer is used for
single pages, not complete paths, independently of the path buffer. The buffer, called LRU-buffer,
follows the last recently used policy. The reason for two different buffers is that the path buffer
exclusively belongs to the data structure (i.e. R*-tree), whereas the LRU-buffer is considered as a
buffer of the underlying system. Note, that in a multiuser environment, a spatial join operation can
only occupy a “small” fraction of the LRU-buffer. To which extend the LRU-buffer is used in a
spatial join, depends on the system load. In our experiments, we assume that the R*-trees involved
in the MBR-join exclusively use all pages of the LRU-buffer.
In table 4, we report the results of the algorithm MBR_J1 using R*-trees R and S as input. The
MBR-join is performed with various page sizes and various buffer sizes. The largest considered
buffer size corresponds to keeping about 6% of both R*-trees in main memory. For todays compu-
ter system, this seems to be a realistic assumption. For each setting, we report the number of disk
accesses required to compute the join. Additionally, we keep track of the number of comparisons

page size M
R*-tree R R*-tree S

|R|+|S|
height |R|dir |R|data height |S|dir |S|data

1 KByte 51 4 127 4,202 4 117 3,996 8,442

2 KByte 102 3 33 2,143 3 30 1,991 4,197

4 KByte 204 3 9 1,069 3 8 1,005 2,091

8 KByte 409 3 3 541 3 3 495 1,042

17

required for checking the join condition. This number is reported in the last row of table 4. Note,
that this number is independent of the size of the LRU-buffer.

Tab. 4. Number of disk accesses and comparisons required for MBR_J1
Let us first discuss the results without using an LRU-buffer, i.e. buffer size = 0. For all sizes of
pages, a page of the R*-tree is read into main memory on the average only about three times. For
these specific files, the overlap of the R*-tree seems to have not much influence on the perform-
ance of the join. Now let us consider the cases of using small LRU-buffers. For a small page, the
LRU-buffer pays off even if it is very small. For a 32 KByte LRU-buffer, the number of disk ac-
cesses is only 55% of the number required by the join without any LRU-buffer. For larger page
sizes, the same effect can only be observed in case of also using a large buffer.

In order to determine whether the MBR-join is CPU-bound or I/O-bound, we have estimated
the execution time of the MBR-join charging 1.5*10-2 seconds for positioning the disk arm,
0.5*10-3 seconds for transferring 1 KByte of data from disk and, 3.9*10-6 seconds for a floating
point comparison (including necessary overhead). The last number is determined experimentally
and depends obviously on the underlying hardware. For performing the experiments, we used
HP720 workstations which deliver on 57 MIPs and 17.9 MFlops. Moreover, the positioning cost
for moving the disk arm to the position of the desired page depends on the specific disk, how well
the spatial relations are clustered on disk and on the load of the disk during performing the join.
Using the results of table 4, we have computed the time estimates presented in figure 8.

Fig. 8. Estimation of the execution time of MBR_J1

As demonstrated in the upper diagram of figure 8, best overall performance is achieved for page
sizes of 1 and 2 KByte. The lower diagram shows that the MBR-join is slightly I/O-bound for a
page size of 1 KByte. However, with increasing page size, the MBR-join is becoming more and

Size of pages

1 KByte 2 KByte 4 KByte 8 KByte

Size of
LRU-buffer

(KByte)

0 24,727 12,479 5,720 2,837

8 20,318 12,010 5,720 2,837

32 13,803 9,589 5,454 2,822

128 11,359 6,299 4,474 2,676

512 10,372 4,964 2,768 2,181

opt. buffer size 8,442 4,197 2,091 1,042

comparisons 33,566,961 65,807,555 118,864,748 242,728,164

0 8

32

12
8

51
2 0 8

32

12
8

51
2 0 8

32

12
8

51
2 0 8

32

12
8

51
2

0

200

400

600

800

1000

page size: 1 KByte 2 KByte 4 KByte 8 KByte

time (sec)

buffer size (KByte)

1 KB 2 KB 4 KB 8 KB

0

500

1000
time (sec)

page size

CPU-
time

I/O-
time

buffer size = 128 KByte

18

more CPU-bound. This observation is true for small and large LRU-buffers. Hence, we can state
that cost optimization of a MBR-join has to take into account both, CPU- and I/O-time.

There are at least two parts in the algorithm MBR_J1 which are worth to be improved. First,
CPU-time consumption is rather high since each entry of the one node is checked against all entries
of the other node. Second, pages are selected for the next call of MBR_J1 without taking into ac-
count the I/O-cost for reading these pages. A better approach would be to compute the “best” se-
quence of pairs of pages required for computing the join on the next level of the R*-tree.

In [BKS 93c] a new spatial join algorithm is proposed which improves CPU-time dramatically
using the techniques of spatial sorting and restricting the search space. Moreover, I/O-perform-
ance has been improved by determining how the required pages are read into the buffer. Our sug-
gested policies are based on spatial locality, such that the pages required for computing an answer
to the spatial join are already in the buffer with high probability. In an experimental performance
comparison using large relations of real data, we showed that our suggested techniques improve
the execution time of the conventional approach by factors.

In order to investigate whether our test results depend on the particular data, we have performed
several MBR-joins with various spatial relations obtained from real geographic applications. In
table 5, we report the most import characteristics of our tests (A) to (E). For test (D), we have per-
formed an MBR-join with two identical R*-trees. Nevertheless, our algorithms treated the R*-trees
as if they would be different. For test (E), region data instead of line data was used for performing
MBR-joins [Sta 90].

Tab. 5. Characteristics of R*-trees in tests A - E
In figure 9, we depict the improvement factor how many times the new algorithm performs better
than MBR_J1 for different page sizes. We have assumed a buffer size of 128 KByte. The results
confirm that the factors of performance improvement are not dependent on the test data.

Fig. 9. Improvement factors for different real test data

In our future work, we are particularly interested in a more detailed study of spatial joins. In this
section, we put our emphasis on the MBR-join which computes the spatial join of the minimum
bounding rectangles of the spatial objects. We are in the process of investigating more complex
types of spatial joins which actually operate on the real spatial objects. For example, in [BKSS 93]
we present a multi-step spatial join processor for the object join in which sophisticated geometric

R*-tree R R*-tree S inter-
sections||R||dat subject of map ||S||dat subject of map

(A) 131,461 streets 128,971 rivers & railways 86,094

(B) 131,461 streets 131,192 streets 154,262

(C) 598,677 streets 128,971 rivers & railways 395,189

(D) 128,971 rivers & railways 128,971 rivers & railways 505,583

(E) 67,527 region data 33,696 region data 543,069

A

B

C

D

E1 KByte 2 KByte 4 KByte 8 KByte
0.00

5.00

10.00

15.00

buffer size = 128 KByte

19

filtering and exact geometry processing is integrated. In our point of view spatial join processing
is the area with the highest potential for performance improvements. Performance gains up to three
orders of magnitude are realistic for complex polygons with more than 1000 vertices (see
[BKSS 93]).

7 Conclusions

In this paper, we pointed out that for improving query performance in spatial database systems two
properties are an absolute necessity: (i) a fast spatial access to the objects and (ii) a fast processing
of geometric operations. Starting point of our considerations was the well-established fact that a
fast spatial access can only be achieved by integrating spatial access methods (SAMs) into spatial
database systems. Performance comparisons ([KSSS 89], [HS 92]) demonstrate that the well--
known SAMs do not significantly differ in performance. From our point of view, further research
in designing new SAMs will improve the overall-performance of query processing only margin-
ally. We hopefully convinced the reader that it is more fruitful to optimize existing SAMs - e.g. the
R*-tree - with respect to complex spatial queries than to suggest completely new SAMs.

The most popular approach for handling complex spatial objects is to use their minimum bound-
ing rectangles as a geometric key in a spatial access method. Obviously, this rough approximation
provides a fast but inaccurate filter for the set of answers to a query. The better the quality of the
approximation is, the faster query processing can be performed. We investigated six different types
of approximations with respect to their query performance. As a result of our empirical comparison
it turns out that, depending on the complexity of the objects and the type of queries, the approxi-
mation 5-corner clearly outperforms the popular minimum bounding rectangle.

In a set-oriented access to large sets of objects, e.g. large window queries, high volumes of spa-
tially adjacent objects have to be transferred into main memory. Therefore, a physically contiguous
storage of spatially adjacent objects - global clustering - is necessary to support a fast set-oriented
access to large sets of results. This aspect of spatial query processing has rarely been investigated
although this I/O-intensive transfer offers a high potential for performance improvement. We de-
scribed the scene organization - a technique for supporting efficient set-oriented access to spatial
data. Empirical comparisons showed that the scene organization improves query performance dra-
matically with respect to the conventional approach. For a fast transfer of scenes from secondary
storage into main memory, the scene organization assumes that a set-oriented I/O-manager is avail-
able in the underlying system.

Due to the complexity of the objects on the one hand and the selectivity of spatial queries on the
other hand, it is useful to decompose the objects into simpler components because the decomposi-
tion substitutes complex computational geometry algorithms by multiple executions of simple and
fast algorithms. The usage of TR*-trees - a data structure organizing decomposition components -
facilitates a fast search on the set of components that are affected by the spatial queries and oper-
ations. Performance comparisons with real cartography data indicate that decomposition tech-
niques outperform the traditional undecomposed representation up to one or two orders of magni-
tude depending of the complexity of the spatial objects.

Finally, we showed how the R*-tree can be exploited adequately for improving the expensive
spatial join. We described a new MBR-join algorithm and showed that our suggested techniques
improve the execution time of the standard approach by factors of up to 15. In our point of view,
the spatial join is such an important operation in spatial database systems that the fine tuning of
spatial join processing is an absolute necessity. In future research work, not only the MBR-join has
to be improved but also the more time intensive object-join and overlay-join.

20

References
[AA 83] Asano Ta., Asano Te.: ‘Minimum Partition of Polygonal Regions into Trapezoids’, Proc. 24th IEEE An-

nual Symp. on Foundations of Computer Science, 1983, pp. 233-241.
[Bec 92] Becker, L. A.: ‘A New Algorithm and a Cost Model for Join Processing with Grid Files’, PhD-thesis,

University of Siegen, 1992.
[BHKS 93] Brinkhoff T., Horn H., Kriegel H.-P., Schneider R.: ‘A Storage and Access Architecture for Efficient

Query Processing in Spatial Database Systems’, Proc. 3rd Int. Symp. on Large Spatial Databases, Sin-
gapore, 1993.

[BKS 93a] Brinkhoff T., Kriegel H.-P., Schneider R.: ‘Comparison of Approximations of Complex Objects used for
Approximation-based Query Processing in Spatial Database Systems’, Proc. 9th Int. Conf. on Data
Engineering, Vienna, Austria, 1993.

[BKS 93b] Brinkhoff T., Kriegel H.-P., Schneider R.: ‘Scene Organization: A Technique for Global Clustering in
Spatial Database Systems’, 1993, submitted for publication.

[BKS 93c] Brinkhoff T., Kriegel H.-P., Seeger B.: ‘Efficient Processing of Spatial Joins Using R-trees’, Proc.
ACM/SIGMOD Int. Conf. on Management of Data, Washington D.C., 1993.

[BKSS 90] Beckmann N., Kriegel H.-P., Schneider R., Seeger B.: ‘The R*-tree: An Efficient and Robust Access
Method for Points and Rectangles’, Proc. ACM SIGMOD Int. Conf. on Management of Data, Atlantic
City, NJ., 1990, pp. 322-331.

[BKSS 93] Brinkhoff T., Kriegel H.-P., Schneider R., Seeger B.: ‘Multi-Step Spatial Join Processing’, 1993, sub-
mitted for publication.

[Bur 89] Bureau of the Census: ‘TIGER/Line Percensus Files, 1990 Technical Documentation’, Washington,
D.C., 1989.

[BZ 91] Benson D., Zick G.: ‘Symbolic and Spatial Database for Structural Biology’, Proc. OOPSLA, 1991,
pp. 329-339.

[CDRS 86] Carey M. J., DeWitt D. J., Richardson J. E., Shekita E. J.: ‘Object and File Management in the EXODUS
Extensible Database System’, Proc. 12th Int. Conf. on Very Large Data Bases, Kyoto, Japan, 1986,
pp. 91-100.

[DB 83] Dori D., Ben-Bassat M.: ‘Circumscribing a Convex Polygon by a Polygon of Fewer Sides with Minimal
Area Addition’, Computer Vision, Graphics, and Image Processing, Vol. 24, 1983, pp. 131-159.

[DF 91] Dörflinger J., Forst W.: ‘Approximation durch Kreise: Verfahren zur Berechnung der Hüllkugel’, Man-
uscript, 1991.

[GB 90] Günther O., Buchmann A.: ‘Research Issues in Spatial Databases’, Proc. IEEE CS Bulletin on Data En-
gineering, Vol. 13, No. 4, 1990, pp. 35-42.

[Gra 72] Graham R. L.: ‘An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set’, Info.
Proc. Letters, Vol. 1, 1972, pp. 132-133.

[Gün 93] Günther, O.: ‘Efficient Computations of Spatial Joins’, Proc. 9th Int. Conf. on Data Engineering,
Vienna, Austria, 1993.

[Gut 84] Guttman A.: ‘R-trees: A Dynamic Index Structure for Spatial Searching’, Proc. ACM SIGMOD Int.
Conf. on Management of Data, Boston, MA., 1984, pp. 47-57.

[Güt 89] Güting R. H.: ‘Gral: An Extensible Relational Database System for Geografic Applications’, Proc. 15th
Int. Conf. on Very Large Data Bases, Amsterdam, Netherland, 1989, pp. 33-44.

[HNKT 90] Harada L., Nakano M., Kitsuregawa M., Takagi M.: ‘Query Processing Methods for Multi-Attribute
Clustered Relations’, Proc. 16th Int. Conf. on Very Large Data Bases, Brisbane, 1990, pp. 59-70.

[HS 92] Hoel E.G., Samet H.: ‘A Qualitative Comparison Study of Data Structures for Large Line Segment Da-
tabases’, Proc. SIGMOD Conf., San Diego, CA., 1992, pp 205-214.

[HSW 88] Hutflesz A., Six H.-W., Widmayer P.: ‘Globally Order Preserving Multidimensional Linear Hashing’,
Proc. 4th Int. Conf. on Data Engineering, Los Angeles, CA., 1988, pp. 572-579.

[HWZ 91] Hutflesz A., Widmayer P., Zimmermann C.: ‘Global Order Makes Spatial Access Faster’, Int. Work-
shop on Database Management Systems for Geographical Applications, Capri, Italy, 1991, in: Geo-
graphic Database Management Systems, Springer, 1992, pp. 161-176.

[KHS 91] Kriegel H.-P., Horn H., Schiwietz M.: ‘The Performance of Object Decomposition Techniques for Spa-
tial Query Processing’, Proc. 2nd Symp. on the Design of Large Spatial Databases, Zürich, Switzerland,
1991, in: Lecture Notes in Computer Science, Vol. 525, Springer, 1991, pp. 257-276.

21

[KSSS 89] Kriegel H.-P., Schiwietz M., Schneider R., Seeger B.: ‘Performance Comparison of Point and Spatial
Access Methods’, Proc. 1st Symp. on the Design and Implementation of Large Spatial Databases, Santa
Barbara, CA., 1989, in: Lecture Notes in Computer Science, Vol. 409, Springer, 1990, pp. 89-114.

[Kri 91] Kriegel H.-P., Heep P., Heep S., Schiwietz M., Schneider R.: ‘An Access Method Based Query Pro-
cessor for Spatial Database Systems’, Int. Workshop on Database Management Systems for Geograph-
ical Applications, Capri, Italy, 1991, in: Geographic Database Management Systems, Springer, 1992,
pp. 273-292.

[ME 92] Mishra P., Eich M.H.: ‘Join Processing in Relational Databases’, ACM Computing Surveys, Vol. 24,
No. 1, 1992, pp. 63-113.

[Meg 83] Megiddo N.: ‘Linear-time Algorithms for Linear Programming in R3 and Relates Problems’, SIAM
Journal Comput., Vol. 12, 1983, pp. 759-776.

[Mel 87] Melkman A.A.: ‘On-line Construction of the Convex Hull of a Simple Polyline’, Information Processing
Letters, Vol. 25, No. 1, 1987, pp. 11-12.

[Ore 86] Orenstein J. A.: ‘Spatial Query Processing in an Object-Oriented Database System’, Proc. ACM SIG-
MOD Int. Conf. on Management of Data, Washington D.C., 1986, pp. 326-333.

[Pau 87] Paul H.-B., Schek H.-J., Scholl M.S., Weikum G., Deppisch U.: ‘Architecture and Implementation of
the Darmstadt Database Kernel System’, Proc. ACM SIGMOD Int. Conf. on Management of Data, San
Francisco, CA., 1987, pp. 196-207.

[PH 90] Paterson D., Hennessy J.: ‘Computer Architecture: A Quantitative Approach’, Morgan Kaufman, 1990.
[Pos 84] Post M.J.: ‘Minimum Spanning Ellipsoids’, Proc. 16th Annual Symp. on Theory of Computing, 1984,

pp. 108-116.
[PS 88] Preparata F. P., Shamos M. I.: ‘Computational Geometry’, Springer, 1988.
[Sam 90] Samet H.: ‘The Design and Analysis of Spatial Data Structures’, Addison Wesley, 1990.
[Sch 92] Schneider R.: ‘A Storage and Access Structure for Spatial Database Systems’, Ph.D.-thesis (in German),

Institute for Computer Science, University of Munich, 1992; will be published by BI Wissenschaftsver-
lag.

[Sch 93] Schiwietz M.: ‘Storage and Query Processing of Complex Spatial Objects’, Ph.D.-thesis (in German),
Institute for Computer Science, University of Munich, 1993.

[Sei 90] Seidel R.: ‘Linear Programming and Convex Hulls made Easy’, Proc. 6th Annual ACM Symp. on Com-
putational Geometry, Berkeley, CA., 1990, pp. 211-215.

[SK 88] Seeger B., Kriegel H.-P.: ‘Techniques for Design and Implementation of Efficient Spatial Access Meth-
ods’, Proc. 14th Int. Conf. on Very Large Databases, Los Angeles, CA., 1988, pp. 360-371..

[SK 91] Schneider R., Kriegel H.-P.: ‘The TR*-tree: A New Representation of Polygonal Objects Supporting
Spatial Queries and Operations’, Proc. 7th Workshop on Computational Geometry, Bern, Switzerland,
1991, in: Lecture Notes in Computer Science, Vol. 553, Springer, 1991, pp. 249-264.

[SK 93] Schiwietz M., Kriegel H.-P..: ‘Query Processing of Spatial Objects: Complexity versus Redundancy’,
Proc. 3rd Int. Symp. on Large Spatial Databases, Singapore, 1993.

[SR 86] Stonebraker M., Rowe L.: ‘The Design of POSTGRES’, Proc. ACM SIGMOD Conf. on Management of
Data, Washington D.C., 1986, pp. 340-355.

[SRH 90] Stonebraker M., Rowe L., Hirohama M.: ‘The Implementation of POSTGRES’, IEEE Trans. on Knowl-
edge and Data Engineering, Vol. 2, No. 1, 1990, pp. 125-142.

[Sta 90] Statistical Office of the European Communities: ‘Regions’, 1990.
[SW 92] Six H.-W., Widmayer P.: ‘Spatial Access Structures for Geometric Databases’, Data Structures and Ef-

ficient Algorithms, Lecture Notes in Computer Science, Vol. 594, 1992, pp. 214-232.
[Wei 89] Weikum G.: ‘Set-Oriented Disk Access to Large Complex Objects’, Proc. 5th Int. Conf. on Data

Engineering, Los Angeles, CA., 1989, pp. 426-433.
[Wel 91] Welzl E.: ‘Smallest Enclosing Disks (Balls and Ellipsods), Paper B91-09, Free University of Berlin,

1991.
[Wid 91] Widmayer P.: ‘Data Structures for Spatial Databases’ (in German), in: Vossen G., Witt K.-U. (eds.):

‘Entwicklungstendenzen bei Datenbank-Systemen’ (Future Trends in Database Systems), Oldenbourg,
1991, pp. 317-361.

