
COMPRESSION AND PROGRESSIVE RETRIEVAL

OF MULTI-DIMENSIONAL SENSOR DATA

P. Lorkowski a, , T. Brinkhoff a

a Institute for Applied Photogrammetry and Geoinformatics (IAPG),

Jade University Wilhelmshaven/Oldenburg/Elsfleth, Ofener Str. 16/19, D-26121 Oldenburg, Germany -

(peter.lorkowski, thomas.brinkhoff)@jade-hs.de

Commission II, WG II/1

KEY WORDS: Continuous Phenomena, Discrete Observations, Binary Space Partitioning

ABSTRACT:

Since the emergence of sensor data streams, increasing amounts of observations have to be transmitted, stored and retrieved.

Performing these tasks at the granularity of single points would mean an inappropriate waste of resources. Thus, we propose a

concept that performs a partitioning of observations by spatial, temporal or other criteria (or a combination of them) into data

segments. We exploit the resulting proximity (according to the partitioning dimension(s)) within each data segment for compression

and efficient data retrieval. While in principle allowing lossless compression, it can also be used for progressive transmission with

increasing accuracy wherever incremental data transfer is reasonable. In a first feasibility study, we apply the proposed method to a

dataset of ARGO drifting buoys covering large spatio-temporal regions of the world´s oceans and compare the achieved compression

ratio to other formats.

 Corresponding author

1. INTRODUCTION

Data compression is one key aspect of managing sensor data

streams, since technological progress about transfer rate,

processing power and memory size tends to be outperformed by

the ever-growing amount of available observations. The

increased mobility of sensors due to miniaturization and

improved energy efficiency extends their capabilities. On the

other hand, it requires more advanced techniques of data

processing and analysis to exploit these new opportunities. For

achieving high efficiency, compression methods should take

into account the specific structure of the data they are applied

to.

Sensor observations typically describe continuous or

quantitative variables in multiple dimensions like latitude and

longitude, time, temperature, pressure, voltage, etc. Where these

data, at least locally, tend to be stationary in space and time,

there is high potential for compression: the actual values within

a period and/or spatial range usually cover only a small range of

values compared to the domain represented by a standard data

type like floating-point numbers. Thus, we propose to perform a

partitioning of observations by spatial, temporal or other criteria

(or a combination of them) into data segments. For data

retrieval from spatial or spatio-temporal databases, the creation

of such data segments is also reasonable.

One central feature of our concept is that it supports progressive

data loading for applications that do not (immediately) need the

full accuracy of the queried data. This is especially useful for

environments with limited transmission rate, image resolution

and processing power like mobile computing. We propose to

use recursive binary subdivision of the multidimensional value

space for this purpose. For a given level of progression, an

identical accuracy (relative to the range of values) can be

achieved for each dimension. When using a database as a sink,

it is reasonable to store those data segments as BLOBs indexed

by the dimension(s) used for partitioning. Queries defined by

(spatio-temporal) bounding boxes will then be processed in two

stages: First, the data segments affected by the query are

identified. In the second step, the data segments are

progressively decoded and transmitted until the required

accuracy (e.g. for scientific analysis, web mapping or mobile

computing) is reached.

The remainder of this article is structured as follows: In the next

section, we provide an overview of related work dealing with

sensor data compression. We introduce the methodology used

to compress multi-dimensional sensor data in Section 3. The

methodology will also be concretized for the different supported

data types here before in Section 4 we propose some extensions

that are not yet implemented but which we think might be

useful. Section 5 provides the results from our experimental

study with the data of ARGO drifting buoys monitoring sea the

surface temperature and salinity of the world´s oceans. Finally,

we draw some conclusions in Section 6.

2. RELATED WORK

Managing sensor data streams has to cope with various

limitations of resources like energy, transmission rate,

computational power, volatile and non-volatile memory. In

many cases, compression of observational data can help to

overcome those limitations. Thus, it is widely discussed in

literature.

Medeiros et al. (2014) suggest a Huffman encoding applied to

differences of consecutive measurements and thus achieve high

compression ratios. This method works very efficient with time

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B2, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B2-27-2016

27

series of single sensors for one dimension with small changes

between consecutive observations.

A more adaptive approach of Huffman encoding is introduced

by Kolo et al. (2012), where data sequences are partitioned into

blocks which are compressed by individual schemes for

optimized efficiency.

Sathe et al. (2013) introduce various compression methods,

mainly known from the signal processing literature. Those are

restricted to one measurement variable of one sensor.

Dang et al. (2013) propose a virtual indexing to cluster

measurements that are similar in value but not necessarily

spatio-temporally proximate. After this rearrangement, the data

are compressed using discrete cosine transformations and

discrete wavelet transformations.

The compression of multidimensional signals is covered by

(Duarte & Baraniuk, 2012) and (Leinonen et al., 2014). Both

works apply the Kronecker compressive sensing approach

exploiting sparse approximation of signals with matrix algebra

and is of high computational complexity.

The works listed above make use of the often strong correlation

of consecutive sensor measurements for compression.

The contribution of our compression method in this context is

to address the following requirements simultaneously:

 The compressed units of data are organized as spatio-

temporally confined segments suited for systematic archival

in spatial/spatio-temporal databases.

 Diverse data types such as Double, Integer, DateTime,

Boolean can be compressed losslessly.

 Compression/decompression of multiple data dimensions is

performed simultaneously.

 Within one data segment, observations are compressed

independently (no consecutive observations of single

sensors tracked by their IDs are considered) and thus can

handle data from mobile sensors that are arbitrarily

distributed in space and time.

 Data can be decoded progressively, e.g. for preview maps or

applications with limited accuracy demands.

 Computational costs for coding/decoding are low.

3. METHODOLOGY

3.1 Principle and General Design

The principle applied for our compression method is derived

from the Binary Space Partitioning tree (BSP tree), see (Samet,

2006). Unlike its common utilization for indexing, we use it as

compression method applied to each single observation in a

dataset. It does not presume high correlation of consecutive

observations (time series) like e.g. Huffman encoding does

(Kolo et al., 2012, Medeiros et al., 2014). Thus, our algorithm

does not need to keep track of individual sensors within a set of

observations, but encodes each observation individually within

the given value domains.

The general idea behind the design is to encode observations

describing a continuous phenomenon within a (spatio-temporal)

region. We focus on the representation of the continuous field

as a whole, not on the time series of individual sensors. This in

mind, it appears reasonable to filter out observations that do not

significantly contribute to the description of the field before

long-term archival of the data. When embedded into a

monitoring system, our approach will perform best after some

deliberate depletion based on spatio-temporal statistics

(Lorkowski & Brinkhoff, 2015).

Progressive decompression can support different requirement

profiles and is thus another important design feature of our

approach. For some applications, it might be reasonable to

prioritise response time behaviour (at least for first coarse

results) against full accuracy after performing one step. The

specific structure of our binary format supports this claim.

3.2 Binary Interval Subdivision

For each n-dimensional set of observational data, an n-

dimensional minimum-bounding box over the values actually

can be calculated. In the following, the minimum and the

maximum value of a dimension are denoted by min and max,

respectively. The interval [min,max] will be called value

domain. The value domain is a subset of the domain covered by

the corresponding data type.

Assuming the region of interest to be spatially and/or

temporally confined and the phenomena observed to be

typically stationary like temperature, there is a good chance for

the value domain to be relatively small. Thus, we can achieve a

high resolution requiring relatively few bits of data by using the

multi-dimensional recursive binary region subdivision. The

principle for one dimension is depicted in Fig. 1, where an

interval is recursively partitioned by the binary sequence 0-1-1.

The circle with double arrow represents the position with its

maximum deviation defined by that particular sequence of

subdivision steps (in the following also called levels) within the

interval.

1

0

1

maxmin

Figure 1. Binary interval subdivision

As can easily be concluded from Fig. 1, the number of

necessary bits depends on the required absolute accuracy as

well as on the size of the particular value domain within the

dataset to be compressed.

The considerations above show general a one-dimensional

spatial perspective on the problem. Since we work with sensor

data streams, we have to apply this principle to specific data

types common in this context.

3.3 Supported Data Types

In a sensor web environment, the collected data can in principle

be of ordinal scale (e.g., sensor number), nominal scale (type of

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B2, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B2-27-2016

28

material), discrete scale (number of neighbouring sensors) or

continuous scale (time, temperature) (McKillup & Dyar, 2010).

In the domain of data management and programming, this

information is typically represented by the data types Integer,

Float or Double, Boolean and DateTime. Within a dataset or

observation epoch, the actual data range is usually only a small

fraction of the range covered by the appropriate data type.

Since the data types mentioned above have different

characteristics, those will have to be considered when applying

the multi-dimensional progressive compression.

Double/Float:

The compression is most straightforward for this data type. The

binary tree depth n can be determined by:

 n = log₂(d/a) (1)

where d = value domain (max – min)

 a = accuracy or maximum deviation

Within a multi-dimensional setting, the relative accuracy of

each dimension is equal for equal n while the absolute accuracy

also depends on the size of its value domain.

Thus, when performing the compression synchronously for all

dimensions with each step or level, as we suggest here, we

achieve equal relative accuracy for each dimension. This does

not apply when one dimension has already reached its

maximum bit depth while others still have not (see Tab. 1) or

when particular dimensions have more than one bit per level to

achieve faster convergence (see Section 3.5).

In the case of a Float/Double data type, the interval depicted in

Fig. 1 directly represents the minimum and maximum of the

value domain, and the double arrow represents the accuracy or

maximum deviation reached at the particular level (here: 0-1-1).

Integer:

Although at first glance the data type Integer is the less

complex, it is in fact somewhat more difficult to handle in

respect of progressive compression. First, we have to carefully

avoid the fencepost error when compressing/decompressing to

the last level. So if an interval shall represent 3 integer segments

as depicted in Fig. 2, we need to enlarge it by one before

calculating the extent (max - min) to achieve their correct

representation on the scale.

1 2 3

1 2 3 4

Figure 2. Fencepost error problem

If Integer numbers are used for nominal scales (e.g. for IDs),

coarse indications within the value domain are maybe rather

useless. For that reason it might be necessary to evaluate to the

complete bit depth. If a nominal value domain requires the

highest number of bits to be represented (as column 6 in Tab.

1), all data will have to be transmitted completely before the

Integer number of this dimension is resolved. For more

flexibility, we allow individual bit lengths per step or level for

each dimension (see Section 3.5).

Boolean:

Boolean values can be seen as a special case of Integers with a

range of 2. The special thing about Boolean values is that we

always need only one step or level to express the one bit of

information (last column in Tab. 1).

DateTime:

Unlike the Integer type, the DateTime-type appears much more

complex at first glance than it is in handling. This is the case

because it can be interpreted (and also is usually represented

internally) as ticks (e.g. 100 nanoseconds) elapsed since some

reference point in time (e.g. 01.01.0001, 00:00:00 h). This

internal value (usually a 64-bit integer) is provided by most

libraries and can be used to handle the DateTime data type as

normal Integer or Double for compression. Usually, time spans

within a dataset of observations are tiny compared to the one

covered by DateTime, and the necessary temporal resolution is

also by far lower than that of this data type. Thus, we can expect

high compression rates for this data type.

3.4 Parallel compression of all Dimensions

One central feature of our compression format is the progressive

retrieval of sets of observations with increasing accuracy with

each step or level. The general format is shown in Tab. 1 that

displays the compression format for 9 dimensions of one

observation.

Table 1. Binary format for progressive sensor data storage

Each column represents one dimension and each row stands for

one level of progressive coding/decoding. The bitstream of a

particular dimension terminates at the level where its preset

resolution/accuracy is reached. For the data type Boolean (right

column) this is already the case after the first step or row.

Unlike the structure displayed in Tab. 1 for visualization, the

actual binary format does not contain blank positions, but only

the data bits. Therefore, for decompressing it is necessary to

consider the exact format stucture to have each bit assigned to

the correct dimension.

Due to its general structure, with increasing row numbers this

format tends to decrease in data volume per row and finally

contributes to the accuracy of the dimensions with highest

predefined resolutions only.

101011001

10100000

01001100

11000010

01001000

01100000

011010 0

100001 0

010001 0

111001 0

0010 1

00 0 1

01 0 0

10 0 1

0 1 1

 0

 1

 1

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B2, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B2-27-2016

29

3.5 Flexible Bit Length per Row

Given the structure described above can lead to the situation

where a particular dimension might not be determined at desired

accuracy until the last rows are reached. Most of the data might

have been transmitted unnecessarily when for the other

dimensions rather low accuracy would have sufficed. This

situation might particularly be the case for IDs or nominal

scales. It might be indispensable to receive their exact value at

an early stage of the stepwise transmission.

As a solution for this problem we suggest that bit lengths per

row can be set individually for each dimension. Thus, the value

of a dimension can converge much quicker against its actual

value with each step. In the extreme case, the exact value can

already be provided with the first step of transmission as it is

always the case for binary values. This option can be useful

when the IDs of observations are needed immediately for

visualization or mapping with other data sources.

3.6 Progressive Decompression

As a consequence of the special data structure introduced so far,

decompression must permanently keep track of the actual bit

configuration in combination with the exact number of bits sent

so far. With each new row transmitted, there is an improvement

of accuracy (the factor depending on the number of bits per

row) for each dimension.

In an environment with bandwidth restrictions, this progressive

method provides immediate coarse results, e.g. for visualization.

With the last step, the data is transmitted completely lossless,

according to the predefined resolution. This is not always

necessarily the best choice since the data might not be needed in

full accuracy but rather within shorter transmission time. Thus,

the transmission can be aborted at any level.

4. EXTENSION

Our compression method as introduced so far fulfils the

requirements mentioned in Section 2. There are, however, some

ideas not yet implemented but certainly worth considering to be

realized in future.

In the buoy data sample introduced in the next section, we find

missing measurement values indicated by ‘999.9999’ (see

header in Tab. 2). The idea behind this number is to have an

optical pattern immediately recognizable for the human eye as

exception. Using it as unset-indicator within our compression

algorithm is rather awkward, since, by being an absolute outlier,

it enlarges the value domain (and therefore the necessary bit

depth) significantly. A more explicit variant is desirable here,

e.g. by indicating validity/invalidity of a value by its first bit. In

case of invalidity, the bits to follow for that particular

dimension can simply be dropped, but on the other hand, this

mechanism would make decoding more complex and would

only pay off when having a significant amount of unset values.

Another aspect worth considering is the compression of the

header associated with each compressed data segment (see

Tab. 3). With its metadata for each value dimension (name,

deviation, bit depth, bits per row, min, max) it is crucial for

archival and retrieval and a prerequisite for decoding. In a

monitoring scenario with very small data segments to be

compressed, the relative size of that header can justify its

compression if transmission of data is expensive.

Wherever the transmission of the compressed data is potentially

error prone and not secured by other protocols, it might become

necessary to implement some checksum method within the

binary format itself. In this case, the gain in reliability needs to

be weighted carefully against the overhead according to

implementation, processing and data volume.

5. EXPERIMENTAL STUDY

For our case study with experimental data, we use the drifting

buoy data from the ARGO program provided by a Canadian

governmental service1. The data can be obtained in different

formats. The format we chose for our experiments is described

in Tab. 2.

Table 2. Header of ARGO drifting buoy data

The sample contains all data types we mentioned in Section 3.3.

We find Integer types for the IDs in columns 1, 2 and 3.

Colums 4 and 7 contain DateTime types, colums 5, 6 and 8

represent Double numbers while column 9 displays an on/off

state as Binary.

For our first study we chose a subset of 100, 1000 and 10000

points filtered out by spatial and temporal bounds. Table 3

depicts a corresponding data header generated by our

compression program (note the changed names and order

compared to Tab. 2). The values for min and max are derived

from the data. Together with the preset value max_dev for the

maximum deviation the bit depth bits is determined using

formula (1) in Section 3.3. The value bpr indicates the number

of bits per row used for each column.

A maximum deviation of 0.5 for integer numbers means that at

full bit depth the exact number is provided. For the DateTime

type this value represents seconds, so the minutes are decoded

correctly when set to 30.

Table 3. Header for a dataset of ARGOS drifting buoy

observations

1 http://www.meds-sdmm.dfo-mpo.gc.ca/isdm-

gdsi/drib-bder/svp-vcs/index-eng.asp

 Contents:

 Col 1 = Platform identifier (ARGOS #)

 Col 2 = EXP$ - The originator's experiment number

 Col 3 = WMO$ - WMO platform identifier number

 Col 4 = Position year/month/day hour:minute (UTC)

 Col 5 = Latitude of observation (+ve North)

 Col 6 = Longitude of observation

(+/- 180 deg +ve West of Greenwich)

 Col 7 = Observation year/month/day hour:minute (UTC)

 Col 8 = SSTP - Sea surface temperature (deg. C)

 Col 9 = Drogue on/off - 1 = attached; 0 = not

 Note: Missing value indicated by 999.9999

fname max_dev bits bpr min max

x 0,0005 16 1 10,767 49,671

y 0,0005 15 1 40,07 59,08

val 0,0005 14 1 5,529 18,55

idarg 0,5 16 1 37411 92885

idexp 0,5 12 1 6129 9435

idwmo 0,5 23 1 1300518 6200926

tpos 30 10 1 2010-12-31 21:54 2011-01-01 09:24

tobs 30 10 1 2011-01-01 00:05 2011-01-01 09:57

drg 0 1 1 False True

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B2, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B2-27-2016

30

As can be seen, the value for “idwmo” has the highest bit depth

of 23, since the value range is nearly 5 million.

The effect of this is the longest chain of bits for that dimension

in the corresponding data file (see Tab. 4).

Table 4. Compressed data for 3 observations

of ARGO drifting buoys

(column names to be read vertically!)

Three observations are listed, each containing all 9 data

columns organized vertically (as are the column names) with

increasing accuracy from top to bottom. As can be seen, the

binary value of the rightmost field drg (indicating drogue

on/off) is already complete in the first row whereas the one for

idwmo is resolved in row 23, as indicated in the header file

(Tab. 3).

Since this column represents an ID, it might very likely be

necessary to resolve it earlier than in the last data row.

Therefore, we increase the number of bits per row to 4. The

resulting structure for the same data can be seen in Tab. 5.

Table 5. Compressed data with prolonged bit length per row for

column idwmo (printed in bold)

In this configuration, the exact values for idwmo (printed bold)

are already resolved in row 6. In practice, the bit length per row

can either be set directly (column bpr in the header), determined

by maximum number of rows for all bits, or by some arbitrary

combination of accuracy and row in the form in row x accuracy

y must be met. This configuration can be set individually for

each dimension to achieve a good balance between stepwise

accuracy improvement and total size per data row.

5.1 Results

To create indicators for the performance of our compression

method, we have applied it to a dataset of 100, 1,000 and

10,000 observations given in the format described in the section

above. We compare four indicators here: The first indicator is

the size of the text file as received from the Canadian

governmental service provider (denoted by “Text” in the

following). The amount of memory necessary when the data is

parsed and translated into native machine data types is

evaluated as second indicator (“Native”). We assume 32 bits for

Integer, 64 bits for Double, 64 bits for DateTime and 8 bits for

oolean. Our binary BSP format is the third format listed. (We

did not consider the size of the header here.) Finally, we applied

ZIP compression of the text file as forth format with 7-Zip with

following settings: normal compression level, deflate method,

32 KB dictionary size and a word size of 32.

 iii iii iii

 dddtt dddtt dddtt

 vaewpod vaewpod vaewpod

 arxmobr arxmobr arxmobr

xylgpossg xylgpossg xylgpossg

101011001 010101000 111101000

10100000 01110000 00010000

01001100 00100100 00000100

11000010 00010010 00010010

01001000 01001000 00101000

01100000 01111000 01011001

01101000 01001001 00101000

10000100 01101100 11101101

01000110 11000111 10000111

11100100 00010100 11110100

001001 101011 111011

000001 010111 011111

0100 0 0101 0 1010 0

1010 1 0111 1 0001 1

01 1 1 10 0 1 10 1 1

1 0 0 1 0 1 0 1 0

 1 0 1

 1 0 0

 1 1 0

 1 0 0

 1 0 0

 1 0 0

 0 1 1

 iii iii iii

 ddd tt ddd tt ddd tt

 vaew pod vaew pod vaew pod

 arxm obr arxm obr arxm obr

xylgpo ssg xylgpo ssg xylgpo ssg

100011010001 010101010000 101011010000

10000000100 01000000100 11100000100

01001111100 00010111100 00101111100

01000011000 00010011100 00100011000

11001111100 01011001000 01101010110

11000110 00 01011001 00 11100100 00

11101 10 01011 10 11101 10

10000 10 11111 10 01100 00

11110 00 11010 00 10100 11

11000 10 10100 11 01100 11

00010 10 10011 11 01100 11

10110 00 01101 01 00100 01

1111 1110 0010

0010 1101 1110

0110 0001 1110

1 10 1 11 1 10

 0 0 1

 1 1 1

 1 1 1

 0 1 1

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B2, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B2-27-2016

31

0,00

2,00

4,00

6,00

8,00

10,00

Text Native BSP ZIP

100 Points

0,00

20,00

40,00

60,00

80,00

100,00

Text Native BSP ZIP

1000 Points

0,00

200,00

400,00

600,00

800,00

1000,00

Text Native BSP ZIP

10000 Points

Figure 6. Data volumes (KiB) in different formats for 3 datasets

As can be seen in Fig. 6, our approach outperforms the ZIP

compression for the small sample. With growing data size, the

efficiency of the ZIP dictionary is increasing, which is not the

case for our approach. Nevertheless, taking into account

progressive decoding as an important key feature, the slightly

worse compression ratio for large datasets appears acceptable.

More valuable experiments with realistic settings for coarse data

retrieval will be addressed in future work. The focus here was to

introduce the concept and give a rough estimate of its overall

efficiency.

6. CONCLUSIONS

The methodology presented here is useful for situations where

massive sensor data need to be compressed in a way that allows

a progressive retrieval with increasing accuracy per step. It

supports the most typical data types found in sensor data like

Float/Double, Integer, Boolean, and DateTime, each one with

specific compression methodologies. The compression ratio

depends on the value range and necessary accuracy. The

number of bits per transmission step can be set in accordance

with the transmission priorities, e.g. if certain dimensions are

needed with higher convergence of accuracy per step.

The method requires some overhead for communication

between data nodes. So the header that determines the mode of

transmission needs to be exchanged. In environments where

transmission of data is significantly more expensive than

processing coding/decoding tasks, this method is likely to pay

off. For using the proposed method in a real-time environment,

some protocol needs to be created to retain efficiency of

transmission: values of defect sensors can be omitted, changed

value ranges need to be adjusted and maybe the bits-per-row

configuration should be changed due to changed priorities. All

this means considerable overhead which should carefully be

weighed against achievable savings for data transmission.

When thinking about long-term archival of data streams in

databases, there are several points to be considered. Maybe the

most important one is how a large dataset is to be segmented

into smaller units. Doing this by spatial and/or temporal

boundaries is reasonable since this is the most obvious means to

refer the sensor data to other aspects like e.g. traffic density.

Databases today widely support efficient management of spatial

and spatio-temporal data (Brinkhoff, 2013). But the associated

indexing techniques were primary developed having retrieval

performance and not compression in mind. Thus, it appears

reasonable to make use of them at a higher granularity level

than the individual observation. So the method proposed here

can be applied to appropriate segments of data while using the

spatial or spatio-temporal boundaries of that segments for

indexing with common database techniques. The compressed

segment can be stored as binary large objects (BLOBs) in the

database with associated spatial/spatio-temporal index and

metadata.

Since the spatio-temporal boundaries can also be seen as

statistical properties of the dataset, it is reasonable to ask if

additional statistical properties like mean value, standard

deviation or skewness should not also be considered for each

dataset. This might be of little use for the dimensions space and

time, but can be crucial for measured values like temperature or

air pollutants. If advanced analysis methods like geostatistics

are used, more complex statistical indicators like variogram

model parameters should be considered (Lorkowski &

Brinkhoff, 2015). All those data should be stored as metadata

alongside with each dataset to support efficient retrieval.

One central issue here is the way large datasets are subdivided

into smaller subsets on which the compression method is

applied to and the corresponding metadata are related to. A

good configuration balances retrieval granularity, subset

management overhead, indexing costs, transmission data

volume, system responsiveness and accuracy in a way that

fulfils the requirements of the monitoring system.

REFERENCES

Brinkhoff, T., 2013. Geodatenbanksysteme in Theorie und

Praxis: Einführung in objektrelationale Geodatenbanken unter

besonderer Berücksichtigung von Oracle Spatial. Wichmann,

Heidelberg.

Duarte, M. F., Baraniuk, R. G., 2012. Kronecker Compressive

Sensing. IEEE Transactions on Image Processing, Vol. 21, No.

2, February 2012.

Kolo, J. G., Shanmugam, S. A., Lim, D. W. G., Ang, L.-M.,

Seng, K. P., 2012. An Adaptive Lossless Data Compression

Scheme for Wireless Sensor Networks. Journal of Sensors,

Volume 2012, Article ID 539638, 20 pages.

Leinonen, M., Codreanu, M., Juntti, M., 2014. Compressed

Acquisition and Progressive Reconstruction of Multi-

Dimensional correlated Data in Wireless Sensor Networks.

Proceedings IEEE International Conference on Acoustic,

Speech and Signal Processing (ICASSP), Florence, pp. 6449-

6453.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B2, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B2-27-2016

32

Lorkowski, P., Brinkhoff, T., 2015. Environmental Monitoring

of Continuous Phenomena by Sensor Data Streams: A System

Approach based on Kriging. Proceedings 29th International

Conference on Informatics for Environmental Protection,

Copenhagen, Denmark, Atlantis Press.

McKillup, S., Dyar, M. D., 2010. Geostatistics Explained: An

Introductory Guide for Earth Scientists. Cambridge University

Press, New York.

Medeiros, H. P., Maciel, M. C., Souza, R. D., Pellenz, M. E.,

2014. Lightweight Data Compression in Wireless Sensor

Networks Using Huffman Coding. International Journal of

Distributed Sensor Networks, Volume 2014, Article ID 672921,

11 pages.

Samet, H., 2006. Foundations of Multidimensional and Metric

Data Structures. Morgan Kaufmann, San Francisco.

Sathe, S., Papaioannou, T. G., Jeung, H., Aberer, K., 2013. A

Survey of Model-Based Sensor Data Acquisition and

Management. In: Aggarwal, C. C. (ed.), Managing and Mining

Sensor Data, Springer, New York.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B2, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B2-27-2016

33

