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ABSTRACT: 

 

Since the emergence of sensor data streams, increasing amounts of observations have to be transmitted, stored and retrieved. 

Performing these tasks at the granularity of single points would mean an inappropriate waste of resources. Thus, we propose a 

concept that performs a partitioning of observations by spatial, temporal or other criteria (or a combination of them) into data 

segments. We exploit the resulting proximity (according to the partitioning dimension(s)) within each data segment for compression 

and efficient data retrieval. While in principle allowing lossless compression, it can also be used for progressive transmission with 

increasing accuracy wherever incremental data transfer is reasonable. In a first feasibility study, we apply the proposed method to a 

dataset of ARGO drifting buoys covering large spatio-temporal regions of the world´s oceans and compare the achieved compression 

ratio to other formats.  

 

 

                                                                 
   Corresponding author 

1. INTRODUCTION 

Data compression is one key aspect of managing sensor data 

streams, since technological progress about transfer rate, 

processing power and memory size tends to be outperformed by 

the ever-growing amount of available observations. The 

increased mobility of sensors due to miniaturization and 

improved energy efficiency extends their capabilities. On the 

other hand, it requires more advanced techniques of data 

processing and analysis to exploit these new opportunities. For 

achieving high efficiency, compression methods should take 

into account the specific structure of the data they are applied 

to.  

 

Sensor observations typically describe continuous or 

quantitative variables in multiple dimensions like latitude and 

longitude, time, temperature, pressure, voltage, etc. Where these 

data, at least locally, tend to be stationary in space and time, 

there is high potential for compression: the actual values within 

a period and/or spatial range usually cover only a small range of 

values compared to the domain represented by a standard data 

type like floating-point numbers. Thus, we propose to perform a 

partitioning of observations by spatial, temporal or other criteria 

(or a combination of them) into data segments. For data 

retrieval from spatial or spatio-temporal databases, the creation 

of such data segments is also reasonable. 

 

One central feature of our concept is that it supports progressive 

data loading for applications that do not (immediately) need the 

full accuracy of the queried data. This is especially useful for 

environments with limited transmission rate, image resolution 

and processing power like mobile computing. We propose to 

use recursive binary subdivision of the multidimensional value 

space for this purpose. For a given level of progression, an 

identical accuracy (relative to the range of values) can be 

achieved for each dimension. When using a database as a sink, 

it is reasonable to store those data segments as BLOBs indexed 

by the dimension(s) used for partitioning. Queries defined by 

(spatio-temporal) bounding boxes will then be processed in two 

stages: First, the data segments affected by the query are 

identified. In the second step, the data segments are 

progressively decoded and transmitted until the required 

accuracy (e.g. for scientific analysis, web mapping or mobile 

computing) is reached.  

 

The remainder of this article is structured as follows: In the next 

section, we provide an overview of related work dealing with 

sensor data compression. We introduce the methodology used 

to compress multi-dimensional sensor data in Section 3. The 

methodology will also be concretized for the different supported 

data types here before in Section 4 we propose some extensions 

that are not yet implemented but which we think might be 

useful. Section 5 provides the results from our experimental 

study with the data of ARGO drifting buoys monitoring sea the 

surface temperature and salinity of the world´s oceans. Finally, 

we draw some conclusions in Section 6.  

 

2. RELATED WORK 

Managing sensor data streams has to cope with various 

limitations of resources like energy, transmission rate, 

computational power, volatile and non-volatile memory. In 

many cases, compression of observational data can help to 

overcome those limitations. Thus, it is widely discussed in 

literature.  

 

Medeiros et al. (2014) suggest a Huffman encoding applied to 

differences of consecutive measurements and thus achieve high 

compression ratios. This method works very efficient with time 
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series of single sensors for one dimension with small changes 

between consecutive observations.  

 

A more adaptive approach of Huffman encoding is introduced 

by Kolo et al. (2012), where data sequences are partitioned into 

blocks which are compressed by individual schemes for 

optimized efficiency.  

 

Sathe et al. (2013) introduce various compression methods, 

mainly known from the signal processing literature. Those are 

restricted to one measurement variable of one sensor.  

 

Dang et al. (2013) propose a virtual indexing to cluster 

measurements that are similar in value but not necessarily 

spatio-temporally proximate. After this rearrangement, the data 

are compressed using discrete cosine transformations and 

discrete wavelet transformations.  

 

The compression of multidimensional signals is covered by 

(Duarte & Baraniuk, 2012) and (Leinonen et al., 2014). Both 

works apply the Kronecker compressive sensing approach 

exploiting sparse approximation of signals with matrix algebra 

and is of high computational complexity.  

 

The works listed above make use of the often strong correlation 

of consecutive sensor measurements for compression.  

 

The contribution of our compression method in this context is 

to address the following requirements simultaneously:  

 

 The compressed units of data are organized as spatio-

temporally confined segments suited for systematic archival 

in spatial/spatio-temporal databases. 

 Diverse data types such as Double, Integer, DateTime, 

Boolean can be compressed losslessly.  

 Compression/decompression of multiple data dimensions is 

performed simultaneously. 

 Within one data segment, observations are compressed 

independently (no consecutive observations of single 

sensors tracked by their IDs are considered) and thus can 

handle data from mobile sensors that are arbitrarily 

distributed in space and time.  

 Data can be decoded progressively, e.g. for preview maps or 

applications with limited accuracy demands. 

 Computational costs for coding/decoding are low. 

 

3. METHODOLOGY 

3.1 Principle and General Design 

The principle applied for our compression method is derived 

from the Binary Space Partitioning tree (BSP tree), see (Samet, 

2006). Unlike its common utilization for indexing, we use it as 

compression method applied to each single observation in a 

dataset. It does not presume high correlation of consecutive 

observations (time series) like e.g. Huffman encoding does 

(Kolo et al., 2012, Medeiros et al., 2014). Thus, our algorithm 

does not need to keep track of individual sensors within a set of 

observations, but encodes each observation individually within 

the given value domains.  

 

The general idea behind the design is to encode observations 

describing a continuous phenomenon within a (spatio-temporal) 

region. We focus on the representation of the continuous field 

as a whole, not on the time series of individual sensors. This in 

mind, it appears reasonable to filter out observations that do not 

significantly contribute to the description of the field before 

long-term archival of the data. When embedded into a 

monitoring system, our approach will perform best after some 

deliberate depletion based on spatio-temporal statistics 

(Lorkowski & Brinkhoff, 2015).  

 

Progressive decompression can support different requirement 

profiles and is thus another important design feature of our 

approach. For some applications, it might be reasonable to 

prioritise response time behaviour (at least for first coarse 

results) against full accuracy after performing one step. The 

specific structure of our binary format supports this claim.  

 

3.2 Binary Interval Subdivision 

For each n-dimensional set of observational data, an n-

dimensional minimum-bounding box over the values actually 

can be calculated. In the following, the minimum and the 

maximum value of a dimension are denoted by min and max, 

respectively. The interval [min,max] will be called value 

domain. The value domain is a subset of the domain covered by 

the corresponding data type.  

 

Assuming the region of interest to be spatially and/or 

temporally confined and the phenomena observed to be 

typically stationary like temperature, there is a good chance for 

the value domain to be relatively small. Thus, we can achieve a 

high resolution requiring relatively few bits of data by using the 

multi-dimensional recursive binary region subdivision. The 

principle for one dimension is depicted in Fig. 1, where an 

interval is recursively partitioned by the binary sequence 0-1-1. 

The circle with double arrow represents the position with its 

maximum deviation defined by that particular sequence of 

subdivision steps (in the following also called levels) within the 

interval.  

 

1

0

1

maxmin

 
 

Figure 1. Binary interval subdivision 

 

 

 

As can easily be concluded from Fig. 1, the number of 

necessary bits depends on the required absolute accuracy as 

well as on the size of the particular value domain within the 

dataset to be compressed.  

 

The considerations above show general a one-dimensional 

spatial perspective on the problem. Since we work with sensor 

data streams, we have to apply this principle to specific data 

types common in this context.  

 

3.3 Supported Data Types 

In a sensor web environment, the collected data can in principle 

be of ordinal scale (e.g., sensor number), nominal scale (type of 
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material), discrete scale (number of neighbouring sensors) or 

continuous scale (time, temperature) (McKillup & Dyar, 2010).   

 

In the domain of data management and programming, this 

information is typically represented by the data types Integer, 

Float or Double, Boolean and DateTime. Within a dataset or 

observation epoch, the actual data range is usually only a small 

fraction of the range covered by the appropriate data type.  

 

Since the data types mentioned above have different 

characteristics, those will have to be considered when applying 

the multi-dimensional progressive compression. 

 

Double/Float:  

The compression is most straightforward for this data type. The 

binary tree depth n can be determined by:  

 

 n = log₂(d/a) (1) 
 
where  d = value domain (max – min) 

 a = accuracy or maximum deviation 

 

Within a multi-dimensional setting, the relative accuracy of 

each dimension is equal for equal n while the absolute accuracy 

also depends on the size of its value domain.  

 

Thus, when performing the compression synchronously for all 

dimensions with each step or level, as we suggest here, we 

achieve equal relative accuracy for each dimension. This does 

not apply when one dimension has already reached its 

maximum bit depth while others still have not (see Tab. 1) or 

when particular dimensions have more than one bit per level to 

achieve faster convergence (see Section 3.5).  

 

In the case of a Float/Double data type, the interval depicted in 

Fig. 1 directly represents the minimum and maximum of the 

value domain, and the double arrow represents the accuracy or 

maximum deviation reached at the particular level (here: 0-1-1). 

 

Integer:  

Although at first glance the data type Integer is the less 

complex, it is in fact somewhat more difficult to handle in 

respect of progressive compression. First, we have to carefully 

avoid the fencepost error when compressing/decompressing to 

the last level. So if an interval shall represent 3 integer segments 

as depicted in Fig. 2, we need to enlarge it by one before 

calculating the extent (max - min) to achieve their correct 

representation on the scale.  

 

1 2 3

1 2 3 4
 

 

Figure 2. Fencepost error problem 

 

If Integer numbers are used for nominal scales (e.g. for IDs), 

coarse indications within the value domain are maybe rather 

useless. For that reason it might be necessary to evaluate to the 

complete bit depth. If a nominal value domain requires the 

highest number of bits to be represented (as column 6 in Tab. 

1), all data will have to be transmitted completely before the 

Integer number of this dimension is resolved. For more 

flexibility, we allow individual bit lengths per step or level for 

each dimension (see Section 3.5).  

 

Boolean: 

Boolean values can be seen as a special case of Integers with a 

range of 2. The special thing about Boolean values is that we 

always need only one step or level to express the one bit of 

information (last column in Tab. 1).  

 

DateTime: 

Unlike the Integer type, the DateTime-type appears much more 

complex at first glance than it is in handling. This is the case 

because it can be interpreted (and also is usually represented 

internally) as ticks (e.g. 100 nanoseconds) elapsed since some 

reference point in time (e.g. 01.01.0001, 00:00:00 h). This 

internal value (usually a 64-bit integer) is provided by most 

libraries and can be used to handle the DateTime data type as 

normal Integer or Double for compression. Usually, time spans 

within a dataset of observations are tiny compared to the one 

covered by DateTime, and the necessary temporal resolution is 

also by far lower than that of this data type. Thus, we can expect 

high compression rates for this data type.  

 

3.4 Parallel compression of all Dimensions 

One central feature of our compression format is the progressive 

retrieval of sets of observations with increasing accuracy with 

each step or level. The general format is shown in Tab. 1 that 

displays the compression format for 9 dimensions of one 

observation.  

 

 
 

Table 1. Binary format for progressive sensor data storage 

 

Each column represents one dimension and each row stands for 

one level of progressive coding/decoding. The bitstream of a 

particular dimension terminates at the level where its preset 

resolution/accuracy is reached. For the data type Boolean (right 

column) this is already the case after the first step or row. 

 

Unlike the structure displayed in Tab. 1 for visualization, the 

actual binary format does not contain blank positions, but only 

the data bits. Therefore, for decompressing it is necessary to 

consider the exact format stucture to have each bit assigned to 

the correct dimension.  

 

Due to its general structure, with increasing row numbers this 

format tends to decrease in data volume per row and finally 

contributes to the accuracy of the dimensions with highest 

predefined resolutions only. 

101011001 

10100000  

01001100  

11000010  

01001000  

01100000  

011010 0  

100001 0  

010001 0  

111001 0  

0010 1    

00 0 1    

01 0 0    

10 0 1    

0  1 1    

     0    

     1    

     1    
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3.5 Flexible Bit Length per Row 

Given the structure described above can lead to the situation 

where a particular dimension might not be determined at desired 

accuracy until the last rows are reached. Most of the data might 

have been transmitted unnecessarily when for the other 

dimensions rather low accuracy would have sufficed. This 

situation might particularly be the case for IDs or nominal 

scales. It might be indispensable to receive their exact value at 

an early stage of the stepwise transmission.  

 

As a solution for this problem we suggest that bit lengths per 

row can be set individually for each dimension. Thus, the value 

of a dimension can  converge much quicker against its actual 

value with each step. In the extreme case, the exact value can 

already be provided with the first step of transmission as it is 

always the case for binary values. This option can be useful 

when the IDs of observations are needed immediately for 

visualization or mapping with other data sources.  

 

3.6 Progressive Decompression 

As a consequence of the special data structure introduced so far, 

decompression must permanently keep track of the actual bit 

configuration in combination with the exact number of bits sent 

so far. With each new row transmitted, there is an improvement 

of accuracy (the factor depending on the number of bits per 

row) for each dimension.  

 

In an environment with bandwidth restrictions, this progressive 

method provides immediate coarse results, e.g. for visualization. 

With the last step, the data is transmitted completely lossless, 

according to the predefined resolution. This is not always 

necessarily the best choice since the data might not be needed in 

full accuracy but rather within shorter transmission time. Thus, 

the transmission can be aborted at any level.  

 

4. EXTENSION 

Our compression method as introduced so far fulfils the 

requirements mentioned in Section 2. There are, however, some 

ideas not yet implemented but certainly worth considering to be 

realized in future.  

 

In the buoy data sample introduced in the next section, we find 

missing measurement values indicated by ‘999.9999’ (see 

header in Tab. 2). The idea behind this number is to have an 

optical pattern immediately recognizable for the human eye as 

exception. Using it as unset-indicator within our compression 

algorithm is rather awkward, since, by being an absolute outlier, 

it enlarges the value domain (and therefore the necessary bit 

depth) significantly. A more explicit variant is desirable here, 

e.g. by indicating validity/invalidity of a value by its first bit. In 

case of invalidity, the bits to follow for that particular 

dimension can simply be dropped, but on the other hand, this 

mechanism would make decoding more complex and would 

only pay off when having a significant amount of unset values.  

 

Another aspect worth considering is the compression of the 

header associated with each compressed data segment (see 

Tab. 3). With its metadata for each value dimension (name, 

deviation, bit depth, bits per row, min, max) it is crucial for 

archival and retrieval and a prerequisite for decoding. In a 

monitoring scenario with very small data segments to be 

compressed, the relative size of that header can justify its 

compression if transmission of data is expensive.  

 

Wherever the transmission of the compressed data is potentially 

error prone and not secured by other protocols, it might become 

necessary to implement some checksum method within the 

binary format itself. In this case, the gain in reliability needs to 

be weighted carefully against the overhead according to 

implementation, processing and data volume. 

 

5. EXPERIMENTAL STUDY 

For our case study with experimental data, we use the drifting 

buoy data from the ARGO program provided by a Canadian 

governmental service1. The data can be obtained in different 

formats. The format we chose for our experiments is described 

in Tab. 2. 

 

 
 

Table 2. Header of ARGO drifting buoy data 

 

The sample contains all data types we mentioned in Section 3.3. 

We find Integer types for the IDs in columns 1, 2 and 3. 

Colums 4 and 7 contain DateTime types, colums 5, 6 and 8 

represent Double numbers while column 9 displays an on/off 

state as Binary. 

 

For our first study we chose a subset of 100, 1000 and 10000 

points filtered out by spatial and temporal bounds. Table 3 

depicts a corresponding data header generated by our 

compression program (note the changed names and order 

compared to Tab. 2). The values for min and max are derived 

from the data. Together with the preset value max_dev for the 

maximum deviation the bit depth bits is determined using 

formula (1) in Section 3.3. The value bpr indicates the number 

of bits per row used for each column.  

 

A maximum deviation of 0.5 for integer numbers means that at 

full bit depth the exact number is provided. For the DateTime 

type this value represents seconds, so the minutes are decoded 

correctly when set to 30.  

 

 
 

Table 3. Header for a dataset of ARGOS drifting buoy 

observations 

 

                                                                 
1   http://www.meds-sdmm.dfo-mpo.gc.ca/isdm-

gdsi/drib-bder/svp-vcs/index-eng.asp 

   Contents: 

 Col  1 = Platform identifier (ARGOS #) 

 Col  2 = EXP$ - The originator's experiment number 

 Col  3 = WMO$ - WMO platform identifier number 

 Col  4 = Position year/month/day hour:minute (UTC) 

 Col  5 = Latitude of observation (+ve North) 

 Col  6 = Longitude of observation  

(+/- 180 deg +ve West of Greenwich) 

 Col  7 = Observation year/month/day hour:minute (UTC) 

 Col  8 = SSTP - Sea surface temperature (deg. C) 

 Col  9 = Drogue on/off - 1 = attached; 0 = not 

 

 Note: Missing value indicated by 999.9999 

fname max_dev bits bpr min              max              

x     0,0005  16   1   10,767           49,671           

y     0,0005  15   1   40,07            59,08            

val   0,0005  14   1   5,529            18,55            

idarg 0,5     16   1   37411            92885            

idexp 0,5     12   1   6129             9435             

idwmo 0,5     23   1   1300518          6200926          

tpos  30      10   1   2010-12-31 21:54 2011-01-01 09:24 

tobs  30      10   1   2011-01-01 00:05 2011-01-01 09:57 

drg   0       1    1   False            True             
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As can be seen, the value for “idwmo” has the highest bit depth 

of 23, since the value range is nearly 5 million.  

 

The effect of this is the longest chain of bits for that dimension 

in the corresponding data file (see Tab. 4).  

 

 
 

Table 4. Compressed data for 3 observations  

of ARGO drifting buoys  

(column names to be read vertically!) 

 

Three observations are listed, each containing all 9 data 

columns organized vertically (as are the column names) with 

increasing accuracy from top to bottom. As can be seen, the 

binary value of the rightmost field drg (indicating drogue 

on/off) is already complete in the first row whereas the one for 

idwmo is resolved in row 23, as indicated in the header file 

(Tab. 3).  

 

Since this column represents an ID, it might very likely be 

necessary to resolve it earlier than in the last data row. 

Therefore, we increase the number of bits per row to 4. The 

resulting structure for the same data can be seen in Tab. 5.  

 

 
 

Table 5. Compressed data with prolonged bit length per row for 

column idwmo (printed in bold) 

 

In this configuration, the exact values for idwmo (printed bold) 

are already resolved in row 6. In practice, the bit length per row 

can either be set directly (column bpr in the header), determined 

by maximum number of rows for all bits, or by some arbitrary 

combination of accuracy and row in the form in row x accuracy 

y must be met. This configuration can be set individually for 

each dimension to achieve a good balance between stepwise 

accuracy improvement and total size per data row.   

 

5.1 Results  

To create indicators for the performance of our compression 

method, we have applied it to a dataset of 100, 1,000 and 

10,000 observations given in the format described in the section 

above. We compare four indicators here: The first indicator is 

the size of the text file as received from the Canadian 

governmental service provider (denoted by “Text” in the 

following).  The amount of memory necessary when the data is 

parsed and translated into native machine data types is 

evaluated as second indicator (“Native”). We assume 32 bits for 

Integer, 64 bits for Double, 64 bits for DateTime and 8 bits for 

oolean. Our binary BSP format is the third format listed. (We 

did not consider the size of the header here.) Finally, we applied 

ZIP compression of the text file as forth format with 7-Zip with 

following settings: normal compression level, deflate method, 

32 KB dictionary size and a word size of 32. 

 

   iii        iii        iii    

   dddtt      dddtt      dddtt  

  vaewpod    vaewpod    vaewpod 

  arxmobr    arxmobr    arxmobr 

xylgpossg  xylgpossg  xylgpossg 

 

101011001  010101000  111101000 

10100000   01110000   00010000  

01001100   00100100   00000100  

11000010   00010010   00010010  

01001000   01001000   00101000  

01100000   01111000   01011001  

01101000   01001001   00101000  

10000100   01101100   11101101  

01000110   11000111   10000111  

11100100   00010100   11110100  

001001     101011     111011    

000001     010111     011111    

0100 0     0101 0     1010 0    

1010 1     0111 1     0001 1    

01 1 1     10 0 1     10 1 1    

1  0 0     1  0 1     0  1 0    

     1          0          1    

     1          0          0    

     1          1          0    

     1          0          0    

     1          0          0    

     1          0          0    

     0          1          1    

   iii           iii           iii       

   ddd   tt      ddd   tt      ddd   tt  

  vaew   pod    vaew   pod    vaew   pod 

  arxm   obr    arxm   obr    arxm   obr 

xylgpo   ssg  xylgpo   ssg  xylgpo   ssg 

 

100011010001  010101010000  101011010000 

10000000100   01000000100   11100000100  

01001111100   00010111100   00101111100  

01000011000   00010011100   00100011000  

11001111100   01011001000   01101010110  

11000110 00   01011001 00   11100100 00  

11101    10   01011    10   11101    10  

10000    10   11111    10   01100    00  

11110    00   11010    00   10100    11  

11000    10   10100    11   01100    11  

00010    10   10011    11   01100    11  

10110    00   01101    01   00100    01  

1111          1110          0010         

0010          1101          1110         

0110          0001          1110         

1 10          1 11          1 10         

  0             0             1          

  1             1             1          

  1             1             1          

  0             1             1          
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Figure 6. Data volumes (KiB) in different formats for 3 datasets 

 

As can be seen in Fig. 6, our approach outperforms the ZIP 

compression for the small sample. With growing data size, the 

efficiency of the ZIP dictionary is increasing, which is not the 

case for our approach. Nevertheless, taking into account 

progressive decoding as an important key feature, the slightly 

worse compression ratio for large datasets appears acceptable.  

 

More valuable experiments with realistic settings for coarse data 

retrieval will be addressed in future work. The focus here was to 

introduce the concept and give a rough estimate of its overall 

efficiency.  

 

6. CONCLUSIONS 

The methodology presented here is useful for situations where 

massive sensor data need to be compressed in a way that allows 

a progressive retrieval with increasing accuracy per step. It 

supports the most typical data types found in sensor data like 

Float/Double, Integer, Boolean, and DateTime, each one with 

specific compression methodologies. The compression ratio 

depends on the value range and necessary accuracy. The 

number of bits per transmission step can be set in accordance 

with the transmission priorities, e.g. if certain dimensions are 

needed with higher convergence of accuracy per step.  

 

The method requires some overhead for communication 

between data nodes. So the header that determines the mode of 

transmission needs to be exchanged. In environments where 

transmission of data is significantly more expensive than 

processing coding/decoding tasks, this method is likely to pay 

off. For using the proposed method in a real-time environment, 

some protocol needs to be created to retain efficiency of 

transmission: values of defect sensors can be omitted, changed 

value ranges need to be adjusted and maybe the bits-per-row 

configuration should be changed due to changed priorities. All 

this means considerable overhead which should carefully be 

weighed against achievable savings for data transmission.  

 

When thinking about long-term archival of data streams in 

databases, there are several points to be considered. Maybe the 

most important one is how a large dataset is to be segmented 

into smaller units. Doing this by spatial and/or temporal 

boundaries is reasonable since this is the most obvious means to 

refer the sensor data to other aspects like e.g. traffic density. 

Databases today widely support efficient management of spatial 

and spatio-temporal data (Brinkhoff, 2013). But the associated 

indexing techniques were primary developed having retrieval 

performance and not compression in mind. Thus, it appears 

reasonable to make use of them at a higher granularity level 

than the individual observation. So the method proposed here 

can be applied to appropriate segments of data while using the 

spatial or spatio-temporal boundaries of that segments for 

indexing with common database techniques. The compressed 

segment can be stored as binary large objects (BLOBs) in the 

database with associated spatial/spatio-temporal index and 

metadata.  

 

Since the spatio-temporal boundaries can also be seen as 

statistical properties of the dataset, it is reasonable to ask if 

additional statistical properties like mean value, standard 

deviation or skewness should not also be considered for each 

dataset. This might be of little use for the dimensions space and 

time, but can be crucial for measured values like temperature or 

air pollutants. If advanced analysis methods like geostatistics 

are used, more complex statistical indicators like variogram 

model parameters should be considered (Lorkowski & 

Brinkhoff, 2015). All those data should be stored as metadata 

alongside with each dataset to support efficient retrieval.  

 

One central issue here is the way large datasets are subdivided 

into smaller subsets on which the compression method is 

applied to and the corresponding metadata are related to. A 

good configuration balances retrieval granularity, subset 

management overhead, indexing costs, transmission data 

volume, system responsiveness and accuracy in a way that 

fulfils the requirements of the monitoring system.  
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