
Abstract
In this paper, we show that spatial joins are very suitable to be proc-
essed on a parallel hardware platform. The parallel system is
equipped with a so-called shared virtual memory which is well-
suited for the design and implementation of parallel spatial join al-
gorithms. We start with an algorithm that consists of three phases:
task creation, task assignment and parallel task execution. In order
to reduce CPU- and I/O-cost, the three phases are processed in a
fashion that preserves spatial locality. Dynamic load balancing is
achieved by splitting tasks into smaller ones and reassigning some
of the smaller tasks to idle processors. In an experimental perform-
ance comparison, we identify the advantages and disadvantages of
several variants of our algorithm. The most efficient one shows an
almost optimal speed-up under the assumption that the number of
disks is sufficiently large.

1 Introduction
Spatial database systems (SDBS) must cope with vast amounts of
spatial objects such as points, lines, polygons, etc. One of the most
important design goals is therefore to equip a SDBS with efficient
implementations of the basic spatial operators. Among these opera-
tors, the window query and the spatial join are considered to be the
most important ones. The window query is restricted to a scan
through a single spatial relation, whereas the spatial join combines
two (or more) spatial relations into one. In contrast to ordinary rela-
tional joins, the join predicate refers to a spatial predicate, e.g. the
test of polygons for intersection. An example of a spatial join is the
query “find all forests which are in a city” assuming that there are
two spatial relations “forests” and “cities”.

In this paper, we address the problem of exploiting CPU- and I/
O-parallelism to improve the efficiency of spatial join processing.
The reason for investigating parallelism is twofold. First, although
the run time of sequential spatial join processing has considerably
been improved over the last few years, the response time of the most
efficient sequential algorithms is far from meeting the requirements
of an interactive user who expects answers within a few seconds.
Second, a current hardware trend is the development of inexpensive
parallel computer systems from conventional memories, processors
and disks. It is obvious that such hardware can only be exploited to
a full extent by a SDBS when the system is directed explicitly to
parallelism. For natural joins, it has impressively been shown that
algorithms can take great advantage from parallel hardware, see
[Gra 93] for a survey. Since, however, processing spatial joins is
different from processing natural joins, the same approach cannot
be used for spatial joins. The general approach of applying parallel-
ism to implementing parallel SDBS has attracted research attention
recently, for example in the Paradise project [DeW 94]. Therefore,
the question arises whether parallelism is also a cost-effective ap-
proach to improving the efficiency of spatial joins.

Since on the one hand shared-everything multiprocessors offer
only a limited potential of parallelism and on the other hand shared-
nothing multiprocessors are difficult to program (e.g. load balanc-
ing), a current trend is to design hybrid multiprocessor systems that
avoid those deficiencies of the classical architectures. In the follow-
ing, we examine spatial join processing primarily for such a hybrid
architecture that can be viewed as a shared-disk architecture. Our
hardware platform consists of 24 processors each of them equipped
with 32 MB of main memory. The processors are connected by a
network with a throughput of 32 MB/s. Although the number of
processors is admittedly rather small, it is still considerably higher
than the number of processors of a typical shared-everything multi-
processor system. In contrast to the pure shared-nothing architec-
ture, our hardware platform offers only one data processor dedi-
cated to providing the interface to secondary storage. A more im-
portant difference to the pure shared-nothing architecture is also the
availability of shared virtual memory (SVM) that provides a global
address space. SVM facilitates the design and the implementation
of parallel algorithms that require communication and dynamic
load balancing. Query processing on a SVM shared-nothing archi-
tecture has received very little attention in the database literature.
The work of Shatdal and Naughton [SN 93] is the only one that we
are aware of. They showed that drastic performance improvements
can be achieved on parallel database systems in the presence of data
skew.

Recently, Hoel and Samet ([HS 94b], [HS 94c]) also examined
parallel processing of spatial joins. Our approach is, however, com-
pletely different for several reasons. First, their approach is de-
signed for a special-purpose platform, whereas our approach is im-
plemented on a hybrid of shared-nothing and shared-memory archi-
tecture. Second, the I/O-cost of spatial join processing is considered
in our approach, whereas this is not the case in the work of Hoel and
Samet. Third, our approach is based on R-trees [Gut 84]. The reason
for using R-trees in our approach is that the results of our previous
work on sequential join processing [BKS 93] demonstrated that R-
trees are a very efficient data structure to support spatial joins.
Moreover, the R-tree is a well-known multidimensional spatial ac-
cess method already implemented in several research prototypes
(e.g. Paradise [DeW 94]) and commercial products (e.g. Illustra
[Mon 93]).

The rest of this paper is organized as follows. Section 2 gives a
review on previous approaches to spatial join processing. In partic-
ular, we present the most important techniques used in the sequen-
tial spatial join algorithms based on R-trees. Section 3 is concerned
with the parallel processing of spatial joins. In detail, we present
different approaches to organizing buffers and discuss their impact
on performance. Moreover, we also investigate how to distribute
the work load among the processors and how the load balancing can
be achieved in presence of load skew. Section 4 presents results ob-
tained from a set of experiments which were performed on a real
machine (KSR1). Finally, section 5 concludes the paper and gives
an outlook to future work.

Parallel Processing of Spatial Joins Using R-trees

Thomas Brinkhoff1, Hans-Peter Kriegel1, Bernhard Seeger2

1Institut für Informatik, Universität München, Leopoldstr. 11 B, D-80802 München, Germany

2Fachgebiet Informatik, Universität Marburg, Hans-Meerwein-Str, D-35032 Marburg, Germany

e-mail: {brink,kriegel,bseeger}@informatik.uni-muenchen.de

2 Sequential Processing of Spatial Joins
In the following, we first give a brief review of the previous work
on spatial join processing. Next, we discuss the sequential strategy
of processing spatial joins using R-trees. This strategy is also the
starting point of our approach to parallel processing of spatial joins.

2.1 Review of previous work
Recently, spatial join processing has gained much attention in the
database literature. The central idea in almost all papers is that join
processing consists of at least one filter step and one refinement
step. In a filter step, the spatial join is not computed on the original
relations, but on collections of simple conservative approximations.
For each object, there is one approximation which can refer to a set
of cells obtained from a equidistant grid [OM 88] or to a single geo-
metric primitive, e.g. rectilinear minimum bounding rectangle
(MBR). A filter step produces a set of candidates that contains all
answers of the spatial join and some others (false hits) which do not
fulfill the join predicate. In order to eliminate the false hits, a refine-
ment step is necessary where the exact geometry of the candidates
is tested against the join predicate identifying answers and false
hits.

Most of the investigations have focused on the improvement of
the first filter step. The approaches can be classified depending on
whether a spatial index exists on none, one or both spatial relations.
Becker and Güting [BG 90] examined strategies that belong to the
first two classes, whereas Lo and Ravishankar [LR 94] proposed a
method based on the assumption that an index already exists on one
of the relations. Most research attention has however been given to
the case when an index exists on each of the relations. Orenstein and
Manola [OM 88] proposed to use B-trees combined with z-ordering
for processing spatial joins, whereas Brinkhoff et al. [BKS 93] pro-
posed a filter step based on R-trees that organize the MBRs of the
spatial objects. We will follow this approach for parallel processing
of spatial joins and, therefore, a detailed discussion on this method
will be presented in the next subsection. Other approaches are based
on grid files [BHF 93] and generalization trees [Gün 93] which can be
viewed as a generalization of R-trees.

Relatively little work has been done on the refinement step of the
spatial join. In the refinement step, the remaining candidates, which
are still not identified to be false hits or answers, have to be checked
whether they satisfy the join predicate or not. This requires that the
exact geometry has to be read from secondary storage into main
memory and that the join predicate is checked by using the exact ge-
ometry. Brinkhoff and Kriegel [BK 94] showed that (spatial) clus-
tering of spatial objects considerably reduces the time required for
loading the exact geometry. In [BKSS 94], it was found that an ap-
propriate exact representation of the objects can also considerably
reduce the CPU-time required for checking the join predicate.
Moreover, another filter step can further reduce the total cost of sp-
tail joins. [BKS 94]. Since a second filter step and the refinements
step do not influence the parallel design of spatial joins, it is not
considered in the following.

2.2 Processing the First Filter Step using R-trees
In the following, we discuss how to perform the filter step using R-
trees [Gut 84]. Among the members of the R-tree family, the R*-
tree [BKSS 90] has frequently been referenced as the most promis-
ing approach so far. Therefore, our approach is based on R*-trees
although it is directly applicable to the other members of the family.

The basic idea of performing a filter step with R*-trees is to use
the property that directory rectangles form the minimum bounding
rectangle of the data rectangles in the corresponding subtrees. Thus,
if the rectangles of two directory entries, say ER and ES, do not have
a common intersection, there will be no pair (rectR, rectS) of inter-
secting data rectangles where rectR is in the subtree of ER and rectS

is in the subtree of ES. Otherwise, there might be a pair of intersect-
ing data rectangles in the corresponding subtrees.

The algorithm presented in [BKS 93] starts from the root s of the
trees and traverses both of the trees in a depth-first order. For each
qualifying (intersecting) pair of directory rectangles, the algorithm
follows the corresponding references to the nodes stored on the next
lower level of the trees. Results are found when the leaf level is
reached. In order to reduce the cost of processing, several tuning
techniques are applied to the algorithm. These techniques will be
discussed below in more detail.

The R*-tree makes use of a so-called path buffer accommodating
all nodes of the path which was accessed last. In order to be more
efficient with respect to I/O, an additional buffer is used for single
pages, not complete paths, independently of the path buffer. The
buffer, called LRU-buffer, follows the least recently used policy.
The reason for two different buffers is that the path buffer exclu-
sively belongs to the R*-tree, whereas the LRU-buffer is considered
as a buffer of the underlying database or operating system.
Performance Tuning Techniques
In order to reduce CPU-time, we examined two approaches
[BKS 93]: (i) for a given pair of nodes, we restrict the search space
of the join such that only a small number of entries in the original
algorithm has to be considered, (ii) entries are sorted according to
their spatial location and thereafter, an algorithm based on the
plane-sweep paradigm [PS 85] is used to compute the desired pairs
of intersecting entries. Since a pair of pages is associated with a pair
of (intersecting) entries, the sequence of entries directly results in a
sequence of pages to be read from secondary storage. Therefore, the
second method also reduces the I/O-time. Both approaches are also
used in our parallel processing strategy. Moreover, the second ap-
proach also has a great impact on the design of our parallel process-
ing strategy and, therefore, a detailed discussion follows.

The idea of our approach is to sort the entries in a node of the R*-
tree according to the spatial location of the corresponding rectan-
gles. Obviously, this cannot be achieved without any loss of local-
ity. A suitable solution with respect to computing the intersection is
the following one. Let us consider a sequence ℜ = <r1,...,rk> of k
rectangles. A rectangle ri is given by its lower left corner (ri.xl, ri.yl)
and its upper right corner (ri.xu, ri.yu). A sequence ℜ = <r1,...,rk> is
sorted with respect to the x-axis if ri.xl ≤ ri+1.xl, 1 ≤ i < k.

Plane sweep is a common technique for computing intersections.
The basic idea is to move a line, the so-called sweep-line, perpen-
dicular to one of the axes, e.g. the x-axis, from left to right. Given
two sequences of rectangles ℜ = <r1,…,rk> and ℑ = <s1,…,sm>
sorted with respect to the x-axis, we exploit the plane-sweep tech-
nique without the overhead of building up any additional dynamic
data structure. First, the sweep-line moves to the rectangle, say t, in
ℜ ∪ ℑ with the lowest xl-value. If the rectangle t is in ℜ , we sequen-
tially traverse ℑ starting from its first rectangle until a rectangle, say
sh, in ℑ is found whose xl-value is greater than t.xu. For each rect-
angle sj, 1 ≤ j < h, we test whether it intersects rectangle t. Other-
wise, if rectangle t is in ℑ , ℜ is traversed analogously. Thereafter,
rectangle t is marked to be processed. Then, the sweep-line is
moved to the next unmarked rectangle in ℜ ∪ ℑ with the lowest xl-
value and the same step as described above is repeated for all un-
marked rectangles. When the last entry from ℜ ∪ ℑ was processed,
all intersections are computed.

r1

Y

X

r2

r3s1

s2
s3

sequence of intersection tests:

t = r1: r1↔s1
t = s1: s1↔r2
t = r2: r2↔s2 , r2↔s3
t = s2: -
t = r3: r3↔s3

Figure 1: Example for the Local Plane-Sweep Order

An example how the algorithm proceeds is illustrated in Figure .
The sweep-line stops at rectangles r1, s1, r2, s2 and r3. For each stop,
the pairs of rectangles which are tested for intersection are given on
the right hand side of Figure . As mentioned above, the sequence of
pairs of intersecting rectangles directly results in a sequence which
determines the order how pages are read from secondary storage.
This order is called the local plane-sweep order. When pages are
read according to the local plane-sweep order, spatial locality is also
preserved in the LRU-buffer.

3 Parallel Processing of Spatial Joins
In spite of the improvements achieved for sequential join process-
ing, the spatial join is a time-consuming operation where the re-
sponse time is far beyond the expectations of an interactive user.
Therefore, it is necessary to investigate the potential that parallel
computer architectures offer for accelerating the spatial join.

Spatial join processing cannot directly exploit the technique of
data declustering which is generally used as the basis for processing
natural joins in parallel (partitioned parallelism [Gra 93]). Given a
declustered data placement of spatial relations R and S into p dis-
joint subsets R1,…,Rp, and S1,…,Sp, respectively, the union of the
response sets obtained from processing spatial joins of Rj and Sj, 1
≤ j ≤ p, is only a subset of the response set of the spatial join of R
and S. This makes the design of parallel spatial join algorithms
more complex. Either data replication or communication between
processors is required for parallel processing of spatial joins.

Our parallel approach of join processing will follow the idea of
partitioned parallelism (with data replication and processor commu-
nication). As a consequence, an appropriate distribution of objects
to processors is most important in the design of our algorithm. The
distribution of objects is based only on the first filter step such that
when a processor has determined a candidate in the first step, the
same processor will execute further filter steps and, if necessary,
also the refinement step. Therefore, we basically restrict our discus-
sion on the filter step using R*-trees.

Let us first discuss the most important cost components which de-
termine the total cost of parallel spatial join processing. Similar to
the sequential processing, we particularly have to consider CPU-
and I/O-cost. The CPU-cost is primarily determined by testing the
spatial join predicate, e.g. whether two objects intersect or not. Such
a test is considerably more expensive than the simple test of a rela-
tional join predicate, e.g. whether two values are equal. The I/O-
cost consists of reading the pages of the access method from sec-
ondary storage into main memory as well as reading the exact ge-
ometry of the objects. In a parallel system, additional cost compo-
nents can occur: communication cost, e.g. for transferring data from
one processor to another, and synchronization cost for accessing or
updating data stored in a shared memory.

Our goal is to minimize the CPU- and the I/O-cost as much as
possible by using a parallel spatial join algorithm without causing
much communication and synchronization cost. First, we will start
with an algorithm which needs almost no communication and syn-
chronization. In order to increase the performance of this first ap-
proach, we will then introduce additional concepts which require
some communication and synchronization.

3.1 A First Approach
The first approach consists of three phases:
 1.) Create a set of tasks to be executed in parallel (task creation).

For a parallel join processing using R*-trees, e.g. a task refers
to performing the sequential algorithm on a pair of subtrees.
This phase is sequentially executed on one processor.

 2.) Because the number of tasks is generally higher than the
number of processors, we need an algorithm for assigning each
task to a processor (task assignment). The tasks assigned to one

processor form the work load of this processor. This step is also
performed sequentially.

 3.) Execute the tasks assigned to a processor without any commu-
nication to the other processors (task execution). This phase is
completely performed in parallel.

Obviously, the question arises: What is a suitable task creation and
task assignment for spatial joins? We assume that one task corre-
sponds to processing the spatial join on a pair of subtrees of the R*-
trees where the affiliated two MBRs intersect. Because we want to
avoid any communication between the processors, we should try to
define work loads which are as much as possible independent from
each other. Otherwise, one object may belong to work loads of dif-
ferent processors. Note that this is a property of the spatial join
which cannot occur for natural joins. As a consequence, each of
these processors would individually read the object from disk which
causes high I/O-cost. In order to reduce the number of objects be-
longing to different work loads, we use spatial adjacency as the cri-
terion for the task assignment. To put it in concrete terms: a work
load consists of a set of spatially adjacent pairs of subtrees. For cre-
ating such a work load, we can use the local plane-sweep order
again (see section 2.2).

In the following, m denotes the number of intersecting MBRs in
the roots of the participating R*-trees and n the number of proces-
sors. We assume that m is much larger than n. If this condition is not
fulfilled, the next lower level of the R*-trees will be considered for
the task assignment. Such a pair of intersecting MBRs corresponds
to a task. Then, we traverse these tasks according to the local plane-
sweep order. The first m modulo n processors receive  m / n pairs
of subtrees according to the order, whereas the others receive  m /
n pairs. Each of these n groups corresponds to one work load. Be-
cause the tasks are assigned completely before the task execution
starts, this type of task assignment is termed static range assign-
ment.

In Figure 2, an example illustrates the static range assignment.
Each root of the R*-trees consists of 3 entries, m is 5 and n is 3.

After the task assignment, each processor joins the subtrees of its
tasks independently from the other processors. The spatial join is
finished as soon as all tasks are completely processed. The pre-
sented approach has one major advantage: As mentioned before, the
task execution avoids communication between the tasks and, in par-
ticular, no shared memory is used. This is of great importance when

II
III

IV

I V
a

b

c

d

e

f

P1 P2 P3
n = 3:

m = 5:

subtree of R*-tree 1 subtree of R*-tree 2

processors

I: (a,d)

II: (b,d)

III: (b,e)

IV: (b,f)

V: (c,f)

{ { {

work load 1 work load 2 work load 3

{

tasks

Figure 2: Example for the Static Range Assignment.

the interconnection network is slow. However, our first approach
for parallel spatial join processing has also several disadvantages:
 • Due to the independent processing of tasks, the following situa-

tion may occur: Two or more processors operate on the same ob-
ject at the same time. In Figure 2, this situation can occur for ob-
jects in subtree b which will be processed by the processors P1
and P2. The I/O-cost for reading the object from disk is generally
higher than the cost for transferring it between processors. In
such a case, it is therefore reasonable that only one processor
reads the required page(s) from disk into its buffer and that the
other processors read the page(s) from the buffer of the first proc-
essor. However, in the approach presented so far, the processors
do not know about the pages kept in the buffers of the other proc-
essors. Therefore, they will independently read the page(s) from
disk and thus cause much higher I/O-cost.

 • The second observation is related to the work loads: In general,
they will not be balanced among the processors. In fact, the
number of tasks is approximately the same for all processors but
the time for executing different tasks varies resulting in a varying
execution time for the work loads.

In order to avoid these problems, we will propose more sophisti-
cated algorithms for parallel spatial join processing in the next sec-
tions.

3.2 Buffer Organization
The first problem described in the last section is caused by the miss-
ing knowledge about the pages stored in the local buffers of the
other processors. A page has to be read from disk although it is al-
ready in the local buffer of a processor.

Local buffers are used in shared-nothing and shared-disk archi-
tectures. When a fast bus is available, we can modify this approach
by allowing the processors to access the buffer of other processors.
For such an approach, a processor has to know where the requested
page is stored. Using a virtual shared memory architecture, a (vir-
tual) global buffer is easy to implement: The global buffer consists
of the sum of the local buffers. The access to a page in the global
buffer is directed by the manager of the virtual shared memory. The
only difference between a processor accessing its own buffer and
accessing the buffer of another processor concerns the access time:
the access to the own buffer is by a factor of about 10 times faster
(see table 2 in section 4). For other parallel architectures without
(virtual) shared memory, the problem of implementing a global
buffer can be solved by using address tables for the local buffers and
remote procedure calls.

The advantage of a global buffer is that a page occurs at most
once in one of the local buffers. Thus, the number of disk accesses
is lower compared to the case when every processor organizes its
local buffer independently. However, a global buffer needs the im-
plementation of locking mechanisms for a synchronization between
the processes. Moreover, the communication on the bus increases
since an access to a page found in the buffer almost always requires
a transfer on the communication network whereas an access to the
local buffer has no impact on the network. The communication is
however reduced by the path buffers of the R*-trees which are
stored in the local memory of the processors. Nevertheless, the in-
creased communication on the bus may compensate the benefits of
the global buffer.

3.3 Task Assignment
The goal of the static range assignment presented in section 3.1 is

to keep those pages in the local buffer which are spatially close to
each other. This strategy cannot be maintained anymore for a global
buffer since the relevant pages of a processor are distributed among
all local buffers: Instead of assigning tasks with spatially adjacent
pages to one processor, these tasks should be distributed over dif-
ferent processors in order to process them simultaneously. Since the
processors receive spatially adjacent pairs of MBRs, this strategy

increases the probability that different processors require the same
page at almost the same time. Therefore, such a simultaneous pro-
cessing of subtrees increases the probability that processors read the
required pages from the global buffer instead of reading them from
disk. The new strategy proceeds as follows: we sort the m intersect-
ing pairs of MBRs in the roots of the participating R*-trees again
according to the local plane-sweep order. Instead of assigning adja-
cent subtrees, we now assign them in a round-robin fashion accord-
ing to the plane-sweep order to the processors. Correspondingly,
this task assignment is called static round-robin assignment. It is il-
lustrated by an example in Figure 3..

In order to distribute the load more evenly on the processors, we
present another approach suitable for global buffers. This is based
on giving up the consecutive execution of the two last phases of par-
allel spatial join processing. Instead, these two phases are alter-
nately performed: First, n tasks are assigned to the processors (re-
call that n denotes the number of processors). As soon as one pro-
cessor has finished its task, the next task is requested. For this so-
called dynamic task assignment, a small queue describing all re-
maining tasks is required. This task queue must be accessible by all
processors. Figure 4 depicts an example for the dynamic task as-
signment.

II

III

IV

I Va

b

c

d

e

f

P1 P2 P3n = 3:

m = 5:

processors

I: (a,d)
IV: (b,f)

II: (b,d)
V: (c,f)

III: (b,e)

subtree of R*-tree 1 subtree of R*-tree 2

{ { {

work load 1 work load 2 work load 3

{

tasks

Figure 3: Example for the Static Round-Robin Assignment.

II

III

IV

I Va

b

c

d

e

f

P1 P2 P3n = 3:

m = 5:

subtree of R*-tree 1 subtree of R*-tree 2

processors

I: (a,d) II: (b,d) III: (b,e)

First:

Then:
P3 has finished: task 4 IV: (b,f)

task 1 task 2 task 3

P1 has finished: task 5 V: (c,f)

→ task queue: IV, V

→ task queue: V

→ task queue: empty

Figure 4: Example for the Dynamic Task Assignment.

3.4 Load Balancing Through Task Reassignment
One major disadvantage of the first approach presented in
section 3.1, is the non-uniformly distributed load on the processors.
Because the time for processing different pairs of subtrees varies,
the time for processing the work loads is not the same. One solution
to the problem would be to use a good estimation of the run time for
each task and to modify the size of the work loads according to this
estimation. However, this is difficult to achieve for spatial joins.
Therefore, we follow a different approach which is called task reas-
signment: First, we process the spatial join as described in the sec-
tions before. When a processor has finished its tasks and there is no
other task in the task queue, the processor offers its help to another
operating processor. This operating processor divides its work load
into two, where one part remains to be its own work load and where
the other part is reassigned to the idle processor. Such a reassigned
work load consists of one or more pairs of subtrees on the root level
or on any other directory level of the R*-trees. Thereafter, both pro-
cessors independently execute these new work loads - this is the
main difference to the proposal of Shatdal and Naughton in [SN 93]
where such processors have to work simultaneously on the same
data structure (i.e. on the same hash table). However, due to the
branch property of R*-trees, an independent processing can effi-
ciently be supported.

The next time when one of the cooperating processors will be
idle, help is given again to its “buddy” processor. This strategy is re-
peated until both of them are idle. Thereafter, they operate indepen-
dently of each other and offer help to other processors. For the case
of local buffers, this strategy keeps the number of the disk accesses
low since the probability is high that pages in the buffer can still be
used when a pair of processors exchange work loads more than
once.

The first interesting question concerns the minimum size of the
work load which is worth to be divided into two. The reassignment
causes some algorithmic overhead and additional communications.
When the size is too small, the improvements obtained from balanc-
ing the load can be compensated by the additional cost. A second
question is, which of the processors receive the help of the idle pro-
cessor? Shatdal and Naughton propose to choose an arbitrary pro-
cessor. An alternative is to select the processor with the highest
work load. For determining that processor, the idle processor needs
additional information. Therefore, each processor reports the num-
ber ns of non-processed pairs of subtrees on the highest level hl
where such pairs exist. The idle processor reads the current values
of hl and ns for selecting the processor with the highest expected
work load.

4 Evaluation
In order to evaluate the performance of the parallel spatial join, we
investigate in this section several join algorithms based on the con-
cepts presented in section 3.

4.1 Test Data
The maps used in our experiments are obtained from files of the US
Bureau of the Census [Bur 89] describing some Californian coun-
ties. map 1 consists of 131,443 streets whereas map 2 represents ad-
ministrative boundaries, rivers and railway tracks. The second map
consists of 127,312 objects. The MBRs of the objects from each
map were organized by an R*-tree with a page size of 4 KB. For the
representation of an entry in a directory page, 40 bytes are used and
for an entry in a data page, 156 bytes are reserved (including the
MBR and a pointer to the exact object representation). Table 1 gives

an overview of the main characteristics of the R*-trees. m denotes
the number of pairs of intersecting MBRs stored in the root pages.

4.2 Test Environment
The experiments were performed on a multiprocessor machine with
a virtual shared memory: the KSR1 of the Kendall Square Research
Corporation. At most 24 processors were available for out tests.
During the experiments, each processor was completely available
for computing the spatial join and the bus of the KSR1 was free
from other communications. Table 2 shows the most important pa-
rameters of the KSR1 concerning the memory.

Because we were not able to control the distribution of the R*-tree
nodes over the disks of the existing disk array, we decided to use a
simulated disk array: Each page of an R*-tree was assigned to a disk
by using its page number and a modulo function, i.e. spatial aspects
have no impact on the selection of the disk where the page is stored.
In the following, we assume an average seek time of 9 msec, an av-
erage latency time of 6 msec and a transfer time for one page (i.e.
for 4 KB) of 1 msec. These parameters are typical values for current
disks and result in 16 msec for reading a page. Moreover, the exact
geometry is clustered on disk as described in [BK 94]. Conse-
quently, there is a one-to-one relationship between a data page and
the cluster where the exact geometry representations of the entries
in the data page are stored. Thus, a data page access includes the ac-
cess to the corresponding cluster. For a cluster of 26 KB (the aver-
age size in our experiments), the time for such an access is
37.5 msec.

In order to control the time necessary for testing the exact geom-
etry of the objects for intersection, we replaced this test by waiting
periods whose lengths depend on the degree of overlap between the
corresponding MBRs. The average time to test one pair of objects
is 10 msec; it varies between 2 msec and 18 msec depending on the
degree of overlap. Experiments with real data have confirmed this
approach assuming a plane-sweep algorithm used for the intersec-
tion test [BKSS 94].

On each processor, we provided an LRU-buffer which was im-
plemented according to the description in [GR 93]. In the following,
the size of these buffers is expressed by the number of R*-tree pages
that can be stored in the buffer. Note that we need proportionally
more memory for buffering the exact geometry of the objects. The
joins start with cold buffers, i.e. they are empty at the beginning.

tree1 tree2

height 3 3

number of data entries 131,443 127,312

number of data pages 6,968 6,778

number of directory pages 95 92

m (number of tasks) 404 404

Table 1: Parameters of the R*-trees

memory
size of

address space
transfer unit

(in bytes)
band width
(in MB/sec)

latency
(in sec-6)

cache 256 KB 64 64 0.1

main memory 32 MB 128 40 1.2

main memory
of other

processors
768 MB 128 32 9

Table 2: Parameters of the KSR1 Concerning the Memory.

4.3 Investigation of the Buffer Organization and the
Task Assignment

First, we investigated the use of different types of buffers and the
different techniques for the task assignment. For this purpose, three
variants of parallel spatial join processing were compared:
 1.) local buffers with a static range assignment (lsr),
 2.) a global buffer with a static round-robin assignment (gsrr), and
 3.) a global buffer with a dynamic task assignment (gd).

These variants were investigated with LRU-buffers of a total size
varying between 200 and 3,200 pages. The number n of processors
used in these experiments was 8 and 24 with the same number of
disks. A task reassignment was performed on the root level of the
R*-trees.

Figure 5 depicts the total number of disk accesses as a function of
the size of the LRU-buffer. For the total run time of all tasks which
includes the CPU-time, the synchronization and the communication
cost between the processors, we obtained comparable results. Note
that the number of disc accesses is higher when the number of pro-
cessors increase from 8 to 24. This is because the buffer space of a
single processor decreases with an increasing number of processors.

Local buffers combined with a static range assignment (lsr) and
the global buffer using a static round-robin assignment (gsrr) do not
differ very much in the number of disk accesses. However, the glo-
bal buffer profits more from using larger buffers than the local buff-
ers. The results demonstrate that a global buffer with dynamically
assigned tasks (gd) has a better performance than a global buffer us-
ing a static task assignment (gsrr). This is caused by the different
run times for processing a pair of subtrees. The example depicted in
Figure 6 illustrates this effect. As a consequence, pairs of spatially
adjacent subtrees that should be processed at the same time, will be
processed at different times using the static round-robin assign-
ment. Thus, the number of disk accesses increases compared to the

technique using dynamically assigned tasks where such differences
can be balanced.

4.4 Investigation of the Task Reassignment
Now, let us investigate the effect of the task reassignment to the per-
formance of the parallel spatial join. Three variants were compared
for this purpose:
 1.) without a reassignment,
 2.) with a reassignment on the level of the roots of the R*-trees,
 3.) with a reassignment on all levels of the R*-tree directories.
These variants were compared using local buffers with a static
range assignment (lsr), a global buffer with a static round-robin as-
signment (gsrr), and a global buffer with a dynamic task assignment
(gd). The total size of the buffer is 800 pages. 8 processors and 8
disks were used in these experiments.

lsr gsrr gd

 200 400 800 1600 3200

12500

15000

17500

20000

22500

25000

27500

 200 400 800 1600 3200

12500

15000

17500

20000

accesses

buffer size

n = 8

Figure 5: Disk accesses using 8 and 24 processors

lsr gsrr gd

 200 400 800 1600 3200

12500

15000

17500

20000

22500

25000

27500

 200 400 800 1600 3200

12500

15000

17500

20000

accesses
accesses

buffer size

n = 8 n = 24

 200 400 800 1600 3200

12500

15000

17500

20000

22500

25000

27500
accesses

buffer size

n = 24

1

2

3
4 5

6

7

8

9

10

11

12

13

14

15

16

17

18

processor: P1 P2 P3 P4 P5

} task

tim
e

numbers = position w.r.t. the local plane-sweep order

example for spatially adjacent tasks

Figure 6: Example for Losing Spatial Adjacency.

 1 2 3

160

180

200

220

240

260

 1 2 3
17000

17100

17200

17300

17400

 1 2 3

160

180

200

220

240

260

 1 2 3
17000

17100

17200

17300

17400

1=2 3

160

180

200

220

240

260

1=2 3
14900

15000

15100

15200

15300

Figure 7: Performance with and without a task reassignment

The left diagrams of Figure 7 show the run time of the processor
finishing first (lower end of the vertical line), of the processor fin-
ishing last (upper end of the vertical line), and the run time on aver-
age (horizontal line). The number of disk accesses is depicted in the
right diagrams.

The results demonstrate that the reassignment minimizes the varia-
tion between the run times of the processors as well as the run time
of the processor that has finished last. Especially, the difference be-
tween the variants 1 and 2 is considerable for the test series (lsr) and
(gsrr). The total run time of all tasks is only slightly increased by the
reassignment. The increase is not caused by an additional algorith-
mic cost of the reassignment which is at most 100 msec in our set
of experiments. The reason is - especially for the test series using
local buffers (lsr) - a higher number of disk accesses caused by the
fact that a processor which has taken over some of the work load
from another processor, often does not find the required pages in its
buffer. Additionally, the reassignment is concentrated in the final
phase of spatial join processing. As a result, waiting periods may
occur.

Using a global buffer with dynamically assigned tasks (gd), a
slightly different situation can be observed: By using the dynamic
task assignment, a task reassignment on the root level is not neces-
sary because the work load is requested task-by-task in this case.
Consequently, the results of the variants 1 and 2 are the same and
the decrease of the response time for completing the spatial join is
smaller. The fact of a non-increasing number of disk accesses indi-
cates again that this approach maintains spatial locality well.
 • In the following experiment we investigate two strategies select-

ing the processor that receives help from the idle processor. In the
test series a, the reassignment algorithm selects the processor
with the most extensive work load. This strategy was also used in
the experiments before. In test series b, an arbitrary processor is
chosen for the task reassignment. This technique follows the pro-
posal of [SN 93]. Our experiments showed that the overhead for
determining the processor with the most extensive work load is
completely negligible. Therefore, Figure 8 depicts only the
number of disk accesses for the different test series. The number
of processors is 8. For the test series using a local buffer, we can
observe a small increase of the number of disk accesses when an
arbitrary processor is chosen. The reason is an increased number
of reassignments where the helping processor does not find the
required pages in its buffer. When a global buffer is used, there is
no difference between the different strategies for determining the
processor to be helped.

4.5 Investigation of Response Time and Speed up
For the best variant of parallel spatial join processing - i.e. for the
variant using a global buffer with a dynamic task assignment and a
task reassignment on all levels of the R*-tree directory - we inves-
tigate now its response time t(n) and its speed up depending on the
number of processors n used in the experiment. The response time
is the wall-clock time between starting the spatial join and comput-
ing the last pair of intersecting objects; it is determined by the pro-

cessor finishing last. The speed up for using n processors is mea-
sured by the quotient between the response time t(1) using 1 proces-
sor and the response time t(n). In the ideal case, we want to decrease
the response time t(n) by the factor n compared to the response time
t(1); in other words: the speed up t(1) / t(n) should be n. However,
initialization periods, synchronization periods, and the communica-
tion between the processes generally prevent to obtain a linear
speed up.

In the case of the spatial join investigated in our experiments, the
initialization period is negligible compared to the other cost. Even
in the worst case, it was smaller than 0.1% of the response time. The
influence of the remaining factors - i.e. the communication (partic-
ularly in order to read pages located in the main memory of other
processors) and the synchronization (especially at the disks) - will
be examined in the following.

In the following experiment, the number of processors varies be-
tween 1 and 24. The total size of the buffer increases linearly with
the number of processors: for 1 processor 100 pages of the R*-tree
can be stored in the buffer and for 24 processors the buffer capacity
is 2,400 pages. For the number d of disks, we run three test series:
1.) 1 disk (d = 1), 2.) 8 disks (d = 8), and 3.) the number of proces-
sors and of disks are the same (d = n). For these test series, Figure 9
shows the response time depending on the number of processors
used.

In the experiment using only 1 disk, the secondary storage becomes
the bottleneck. For 4 or more processors, the response time stays at
about 550 sec. Using 8 or n disks, the response time decreases when
the number of processors increases. However for more than 10 pro-
cessors, the decrease of the response time is smaller in the case of 8
disks compared to the variant of n disks where a response time of
62.8 sec can be obtained using 24 processors. The speed up, de-
picted in Figure 10, demonstrates this effect more clearly.

a

b

2 - lsr 3 - lsr 2 - gsrr 3 - gsrr
17000

17100

17200

17300

17400

accesses

Figure 8: Comparison of different techniques for determining the
processor to be helped.

d = 1

d = 8

d = n

0 4 8 12 16 20 24

0

200

400

600

800

1000

1200

1400

processors (n)

response time (sec)

igure 9: Response Time varying in the number of processors
and disks.

speed up (d = n)

speed up (d = 8)

accesses (d = n)

0 4 8 12 16 20 24

0

5

10

15

20

25

14000

14500

15000

15500

16000

16500

17000

17500

processors (n)

speed up accesses

Figure 10: Speed up and disk accesses varying in the number of
processors.

For the case of 8 disks, the increase of the speed up drops when
more than 10 processors are used. In contrast to this observation, the
speed up is linear for the case of n disks. The speed up for n = d = 24
is 22.6 which is a very good result. One reason for this high speed
up is the good performance of the bus of the KSR1. An additional
explanation is given by the number of disk accesses (also depicted
in Figure 10): Using a growing global buffer, the number of disk ac-
cesses decreases and compensates for some of the additional com-
munication and synchronization cost

The total run time of all tasks was about 7% higher for 4 proces-
sors than for 1 processor in our experiments. Using more than 4 pro-
cessors, this time even falls with an increasing number of proces-
sors. Therefore, we expect that there will be only a modest decline
of the throughput by using the parallel spatial join with a large num-
ber of processors.

4.6 Summary
The major results of our experimental investigations are as follows:
 • The global buffer combined with a dynamic task assignment is

the most efficient assignment technique according to our tests.
This technique preserves spatial locality. Consequently, most of
the page requests can be satisfied by the LRU-buffer.

 • By a task reassignment on all levels of the R*-tree directories, the
load is balanced and the response time is additionally shortened.
For local buffers, the selection of the processor with the most ex-
tensive work load shows the best performance. Otherwise, an ar-
bitrary processor can be chosen for the reassignment.

 • Using only one disk, the speed up will not improve for more than
4 processors computing the spatial join.

 • We achieve a linear speed up close to n when the data is stored on
n disks (e.g. the speed up is 22.6 for 24 processors and disks).

 • Using the parallel spatial join with a large number of processors,
has almost no influence on the total run time of all tasks and
hence, we also expect almost no decline of the throughput.

5 Conclusions
The spatial join is among the most important operations of a spatial
database system. Although the run time of sequential spatial join
processing has considerably been improved over the last few years,
the spatial join is still a very expensive operation. Therefore, the
question arises whether parallelism is a cost-effective approach for
improving the efficiency of a spatial join.

In this paper, we examined different approaches for a parallel
spatial join on a so-called shared-virtual-memory architecture
(SVM). The selection of the SVM-architecture was also motivated
by the increasing transfer rates of networks. We suppose that
shared-nothing architectures available soon will be comparable to a
state-of-the-art SVM-architectures respect to their performance.

We started with a first approach where the spatial join was exe-
cuted in three phases: task creation, task assignment and (parallel)
task execution. The most important characteristics of this approach
are a task assignment according to the local plane-sweep order and
the avoidance of communication between the processors while the
join is processed. In order to reduce the response time, we intro-
duced additional techniques concerning the buffer organization, the
task assignment and the task reassignment. Using the same number
n of processors and of disks, we achieved for the most efficient al-
gorithm a linear speed up close to n (e.g. 22.6 for 24 processors).
The total run time for all tasks was only slightly increased.

In our future work, we are particularly interested in a distributed
spatial join processing using a shared-nothing architecture. We plan
investigations on workstation clusters that are connected through a
fast interconnection network, e.g. ATM-switches. In contrast to the
SVM-model, in a shared-nothing architecture the assignment of the
data to the different disks is of special interest. Furthermore, we
want to integrate the spatial join in a larger framework for parallel

spatial query processing where also other operations such as neigh-
bor and window queries are efficiently supported.

References

[BG 90]Becker L., Gütimg R. H.: ‘Rule-Based Optimization and Query
Processing in an Extendsible Geometric Database System’, ACM
Trans. on Database Systems, 17, 1992, 247-303.

[BHF 93]Becker L., Hinrichs K., Finke U.: ‘A New Algorithm for Comput-
ing Joins with Grid Files’, Proc. 9th Int. Conf. on Data Engineering, Vi-
enna, Austria, 1993, pp. 190-197.

[BK 94]Brinkhoff T., Kriegel H.-P.: ‘The Impact of Global Clustering on
Spatial Database Systems’, Proc. 20th Int. Conf. on Very Large Data-
bases, Santiago, Chile, 1994, pp. 168-179.

[BKS 93]Brinkhoff T., Kriegel H.-P., Seeger B.: ‘Efficient Processing of
Spatial Joins Using R-trees’, Proc. ACM SIGMOD Int. Conf. on Man-
agement of Data, Washington, DC, 1993, pp. 237-246.

[BKSS 90]Beckmann N., Kriegel H.-P., Schneider R., Seeger B.: ‘The R*-
tree: An Efficient and Robust Access Method for Points and Rectan-
gles’, Proc. ACM SIGMOD Int. Conf. on Management of Data,
Atlantic City, NJ, 1990, pp. 322-331.

[BKSS 94]Brinkhoff T., Kriegel H.-P., Schneider R., Seeger B.: ‘Multi-Step
Processing of Spatial Joins’, Proc. ACM SIGMOD Int. Conf. on Man-
agement of Data, Minneapolis, MN, 1994, pp. 197-208.

[Bur 89]Bureau of the Census: ‘TIGER/Line Precensus Files, 1990 Techni-
cal Documentation’, Washington, DC, 1989.

[DeW 94]DeWitt D.J., Kabra N., Lou J., Patel J.M., Yu J.-B.: ‘Client-Server
Paradise’, Proc. 20th Int. Conf. on Very Large Databases, Santiago,
Chile, 1994, pp. 558-569.

[[GR 93]Gray J., Reuter A.: ‘Transaction Processing: Concepts and Tech-
niques’, Morgan Kaufmann, 1993.

[Gra 93]Graefe G.: ‘Query Evaluation Techniques for Large Databases’,
ACM Computing Surveys, Vol. 25, No. 2, 1993, pp. 73-170.

[Gün 93]Günther, O.: ‘Efficient Computation of Spatial Joins’, Proc. 9th Int.
Conf. on Data Engineering, Vienna, Austria, 1993, pp. 50-59.

[Gut 84]Guttman A.: ‘R-trees: A Dynamic Index Structure for Spatial
Searching’, Proc. ACM SIGMOD Int. Conf. on Management of Data,
Boston, MA, 1984, pp. 47-57.

[[HS 94b]Hoel E., Samet H.: ‘Data-Parallel Spatial Join Algorithms’, Proc.
Int. Conf. on Parallel Processing, St. Charles, IL, 1994.

[HS 94c]Hoel E., Samet H.: ‘Performance and Data-Parallel Spatial Oper-
ations’, Proc. 20th Int. Conf. on Very Large Databases, Santiago, Chile,
1994, pp. 156-167.

[LR 94]Lo M.-L., Ravishankar C.V.: ‘Spatial Joins Using Seeded Trees’,
Proc. ACM SIGMOD Int. Conf. on Management of Data, Minneapolis,
MN, 1994, 209-220.

[Mon 93]Montage Software, Inc.: ‘The Montage SPATIAL DataBlade™’,
1993.

[NHS 84]Nievergelt J., Hinterberger H., Sevcik K.C.: ‘The Grid File: An
Adaptable, Symmetric Multikey File Structure’, ACM Trans. on Data-
base Systems, Vol. 9, No. 1, 1984, pp. 38-71.

[OM 88]Orenstein J.A., Manola F.A.: ‘PROBE Spatial Data Modeling and
Query Processing in an Image Database Application’, IEEE Trans. on
Software Engineering, Vol. 14, No. 5, 1988, pp. 611-629.

[PS 85]Preparata F.P., Shamos M.I.: ‘Computational Geometry’, Springer,
1985.

[SN 93]Shatdal A., Naughton J.F.: ‘Using Shared Virtual Memory for Par-
allel Processing’, Proc. ACM SIGMOD Int. Conf. on Management of
Data, Washington, DC, 1993, pp. 119-128.

