

Interoperable Data Processing
by Mobile Geospatial Applications

Thomas Brinkhoff1, Christof Lindenbeck2, Jürgen Weitkämper3
1,3Institute for Applied Photogrammetry and Geoinformatics (IAPG)

FH Oldenburg/Ostfriesland/Wilhelmshaven (University of Applied Sciences)
1thomas.brinkhoff@fh-oow.de 3weitkaemper@fh-oow.de

2in medias res, Gesellschaft für Informationstechnologie mbH
Freiburg i. Br.

linde@webgis.de

Abstract. Scarce resources and specific use cases have to be taken into ac-
count when building applications for mobile devices. Mobile geospatial ap-
plications relying on a web-based spatial data infrastructure (SDI) require
special attention. In this paper, we propose a service architecture for inte-
grating mobile clients into an SDI. Important aspects are the computation of
adequate maps and geospatial features, the support of offline phases and the
supply of context documents that inform about relevant services and data-
sets. We introduce a prototype of a mobile client that allows using SDI ser-
vices for retrieval and data acquisition. Finally, a mobile application in tour-
ism using this client is presented.

1 INTRODUCTION

Spatial data infrastructures (SDIs) form the backbone of most of today’s
software applications accessing geospatial information. An SDI provides a
framework for spatial data discovery, evaluation, and application. Services
of an SDI are typically based on the interface standards developed by the
Open Geospatial Consortium (OGC) and the TC 211 of the ISO.

In recent years, geospatial applications are being adapted or transferred
to mobile devices. Such mobile applications perform two core tasks in gen-
eral:
1. As mobile information retrieval system: In this case, the presentation of

maps and location-based information forms the center of the application.
2. As data acquisition tool: Here, mobile devices are used to obtain geos-

patial data in the field. The information can either be entered by a user
or taken from sensors connected with the device.

Building software for mobile devices poses severe challenges to the de-
veloper – not only in the field of geospatial applications: There exist many
different device categories, platforms, and operating systems with diverse

Brinkhoff
Textfeld
published in: Proceedings of the 6th Geographic Information Days (GI-Days 2008), Münster, Germany, 2008, 275-296

user interfaces and performance. Additionally, the life cycle of the underly-
ing technologies is very short, forcing applications to be adapted in short
intervals.

Apart from the obvious limitations of mobile devices by scarce re-
sources, a mobile application must address several aspects irrelevant to a
corresponding desktop application. Whereas we can assume that a desktop
application is always connected to the Internet, a mobile device typically
switches between online mode and offline mode very often. This may be
due to technical reasons like insufficient signal levels or large energy con-
sumption or simply due to cost. For supporting offline phases, it is impor-
tant to equip a mobile application with enough information and resources to
enable it to work (at least for some period) autonomously. Examples are the
use of vector graphics instead of raster maps and of a local database in or-
der to support the temporary storage of modified or new (input or sensor)
data. When data acquisition is done, a synchronization may become neces-
sary.

Another problem is that the geospatial data provided by SDIs typically
do not fit to the specific requirements of mobile applications. Therefore, a
preparation of data is often necessary in order to reduce the complexity of
geometries, to deliver data formats that can be efficiently displayed and
support offline modes, to reduce the data volume, to simplify the protocols
and so on.

In this paper, we propose a service architecture for integrating mobile
clients into an SDI that addresses the requirements mentioned before. This
architecture allows providing maps and geospatial objects according to the
requirements of mobile clients, supporting offline phases and supplying
context documents that inform a mobile client about relevant services and
datasets. Section 2 of this paper motivates the concept and presents the es-
sential building block of our approach.

In the third section, we introduce a prototype of a mobile client for using
SDI services for retrieval and data acquisition. Topics are the visualization,
the acquisition and manipulation of data and the communication. The pre-
sented concept was inspired by the development of an SDI for disaster
management (OKGIS 2008). In addition, we present in section 4 a mobile
application in the area of tourism that uses this mobile client. The paper
concludes with a short summary and an outlook to future work.

2 INTEGRATION OF MOBILE CLIENTS IN A SPATIAL DATA IN-
FRASTRUCTURE

In this section, we present an architecture for integrating mobile clients into
an SDI that addresses the requirements of geospatial applications.

2.1 Providing Adequate Maps and Data

As mentioned in the introduction, mobile clients for geospatial applications
are limited by scarce resources. Besides restricted computing power, other
important aspects are a relatively small and slow memory, a small display
size, special input devices (e.g., a stylus must be supported instead of a
mouse or a keyboard), the need to save energy, and varying and often low
transmission bandwidths. Furthermore, a large variety of device categories,
platforms, and operating systems exists differing in their user interfaces and
performance. Therefore, we cannot assume that all popular geospatial web
services can be used as by traditional desktop applications. It is necessary
to adapt the results of services to the needs of mobile devices. This special
treatment can be done

(1) by calling SDI services with parameter sets that fit to the require-
ments of the mobile client and/or

(2) by modifying the results of SDI services in order to simplify or super-
sede a post-processing by the mobile client.

An example for the first approach is the use of suitable parameters for
the GetMap request of a Web Map Service (WMS) (OGC 2006). The ob-
jective is to get raster maps as result that fit to the display size and resolu-
tion the mobile device that calls the service. In applications like disaster
management the specification of the parameters should not be determined
by a user himself. Instead, a centralized solution is required that guarantees
a certain quality for each of the mobile devices used by the involved insti-
tutions.

The second approach, for example, will be performed if the complexity
of delivered data does not fit to the capabilities of the mobile device. The
complexity refers to the syntax of the data as well as to semantic properties.
In case of the Web Feature Service (WFS) (OGC 2005a), the result is an
XML-document that describes the geometries by using (the simple feature
subset of) the Geography Markup Language (GML). A typical problem for
mobile applications is the (unnecessary high) degree of detail of the pro-
vided vector geometries. In such a case, a generalization of the geometries
is required that takes the display properties of the requesting mobile device
into account; the generalization could be performed by another service like

the Web Generalization Service presented by Sarjakoski, Sester et al.
(2005).

The WFS is a data service delivering features including geometries.
However, a client requires graphical objects for displaying purposes. In
case of desktop computers, two solutions may be applied: (1) to transform
the WFS result into a supported graphic format by the client itself or (2) to
use a portrayal WMS that calls the WFS and transforms the XML/GML-
document into an image depicting the requested data as map. For mobile
devices both solutions are mostly not applicable: For the first approach, the
computing power and/or transmission bandwidth are typically too low. The
second solution delivers a result that prevents many reasonable autonomous
operations to be performed by the mobile client and increases the need for
additional communication between client and server (this will be discussed
in more detail in the next subsection). The inappropriateness of GML for
web-based GIS has been also discussed by Huang et al. (2006).

Our approach for providing mobile applications adequate geospatial data
is to introduce an intermediate service called Mobile Data Service (MDS).
The MDS is called by the mobile clients for getting individually adapted
results from SDI services. For the support of heterogenous mobile devices,
a similar approach was followed by Brisboa et al. (2007).

The mobile device can also send GetMap requests directly to a WMS
with parameter sets provided by the MDS. In the same way, processing
services like OpenLS routing or geocoding services can be accessed direct-
ly or by using the MDS.

Figure 1 depicts the part of our architecture that provides maps and data.
The arrows illustrate the data flow. In order to determine the right parame-
ters for calling SDI services and for processing their results, a database ex-
ists that manages profiles for each device type. A more detailed description
of the MDS is given by Brinkhoff (2008).

Figure 1: The architecture for integrating mobile applications device-
specifically into an SDI (data part)

2.2 Supporting Offline Usage of the Mobile Application

An essential requirement for the mobile application is the ability to contin-
ue working in the absence of an Internet connection – so-called offline
mode. In this section, we discuss several aspects and design considerations
that arise from this requirement.

Offline panning and zooming
In the context of an OGC-conformant SDI, each change of viewport, scale
or layer visibility results in a new WMS request.

To perform these operations in offline mode, the necessary data has to be
present on the device. Thus, some data may be stored on the device in a
setup phase of the application. Data that do not change very often, e.g.
“background” maps and infrastructure layers, may be pre-installed in this
way. For layers containing dynamic data or maps required by unpredicted
usage conditions, each time the device is in online mode, the future re-
quirements must be anticipated and the necessary data be requested from
the WMS or MDS in advance. For example, a simple strategy would be to
enlarge the viewport for a service request resulting from a panning opera-
tion.

Offline query processing

In order to query the alphanumeric properties of a geospatial object, the
user typically identifies the object with the help of a pointing device.

SDI

MDS

WMS WFS

wireless network

WCS

DB

profiles
processing

Mobile
device
(type A)

Mobile
device
(type B)

Mobile
device
(type C)

Processing
services

Let us consider the case of a map that was obtained from a WMS
processing data from a WFS. To get the data associated with the object, a
GetFeatureInfo request must be sent to the WMS indicating the cur-
rent viewing parameters (viewport, layers etc.) and the pixel coordinates in
the image. The WMS transmits the response as structured data, e.g., as an
HTML page. In offline mode, we face the problem of determining the ob-
ject from the pixel coordinates without the help of the WMS. For this pur-
pose, a raster image does not provide sufficient information.

A possible solution to this problem is the usage of a vector representa-
tion for the layer data, at least for layers that will be used for interactive
object identification (so-called queryable layers). According to the WMS
standard, a service may deliver vector data, e.g., as Scalable Vector Graph-
ics (SVG) (W3C 2003). Many current WMS implementations support this
feature. Nevertheless, on closer inspection the SVG documents generated
are often ill-suited for our purpose since (among other reasons) they do not
provide sufficient information for object identification attached to the SVG
display elements.

As a consequence, the vector data representation for a queryable layer
must be assembled by the MDS. The MDS issues the WFS request and
transforms the XML/GML-document into an SVG document suitable for
displaying purposes on the mobile device.

Managing alphanumerical information

In order to work in offline mode, we need the representation of alphanu-
meric data that belong to the corresponding geospatial feature. This can be
done by supplementing the original graphical primitives by additional data
sections. For example, SVG allows adding such user-defined elements.
However, this approach has an essential disadvantage: First, to embed the
additional data in the SVG documents would generate XML files far too
large to be processed efficiently on a mobile device. Secondly, the extrac-
tion of information from user-defined elements requires querying the XML
document, e.g., by XPath expressions which is very costly with respect to
computing power. Instead, we favor to provide a separate database contain-
ing the corresponding alphanumeric data. Such a database is stored locally
on the mobile device and can be queried and updated by the geospatial ap-
plication. The 1-to-many relation between records in the database and
graphical primitives can be represented by using corresponding keys.

The graphical representation and the corresponding database with alpha-
numerical data can be jointly generated by the MDS and be requested by
the mobile client.

Offline editing of data

With the described representation of queryable layers as adapted SVG doc-
uments together with an alphanumeric data storage, offline editing of exist-
ing objects or object creation can easily be implemented. In the framework
of OGC-conformant SDIs such data modifications are submitted to the
WFS by Transaction requests. Obviously, the transaction request must
be postponed until a network connection is present again. This “synchroni-
zation” process is described next.

Synchronization and Notification

After a period of offline work, the local dataset in general does not reflect
the actual state of datasets organized by the SDI any more. This may be due
to user-affected modifications on the device or to alterations of SDI data by
some external influence. Thus, when communication with the MDS is re-
established after an offline period, the two datasets must be synchronized.

Synchronization works in two directions: data changed on the device has
to be incorporated into the SDI by WFS transaction requests and modified
data relevant to the device must be transferred to the mobile application.
The synchronization is managed by the MDS.

Mobile network connections in general are very slow. Thus, it is essen-
tial to decrease the amount of transferred data. In order to avoid resending
the same data multiple times to the same recipient, the MDS introduces a
“virtual client” for each connected device that keeps track of the state of the
data on that device. Whereas up to now the MDS is stateless – much in the
spirit of OGC services – due to special requirements induced by mobile
devices, a client state managed by the MDS must be introduced.

In principle, there exist two strategies for synchronization. First, the two
datasets could be compared to determine which data have to be updated.
Secondly, the changes may be logged as they are applied and then later be
transmitted to the other dataset.

We favor the “logging” method since far less data have to be exchanged.
All changes that the user applies are logged in a local “synchronization”
database (see also Figure 5). The synchronization database is transmitted to
its virtual representative in the MDS when re-connecting after a period of
offline work or periodically in online mode. The MDS can then issue the
appropriate WFS transaction request to transmit the changes to the SDI.

When the MDS becomes aware of changes of SDI data relevant to a
client, an update notice is stored by the corresponding virtual client. The
mobile application may poll the virtual client periodically for these notifi-
cations to keep the dataset up-to-date.

2.3 Context Documents for Mobile Applications

Geoapplication Context

The OGC Web Map Context (OGC 2005b) has the objective to configure
WMS datasets. In a similar – but more extensive – fashion we introduced a
so-called Geoapplication Context (GAC) for configuring mobile geospatial
applications. There are also some similarities of the GAC to the context
profile proposed by Predic et al. (2006). A GAC provides information
about map services and geospatial data services relevant for the corres-
ponding application, about corresponding data sources, and about suitable
processing services. Furthermore, forms are specified that allow the input
and/or modification of alphanumerical data. Additionally, input and/or
modification operations of geometrical primitives are declared.

The MDS computes the GAC dependent on the device type, the role of
its user, the current situation (e.g., the current disaster), and the data already
available on the mobile device.

Figure 2 shows a fragment of a GAC that declares a map layer with its
corresponding alphanumerical data source. Besides obvious attributes like
id and title, a Layer element may contain various attributes control-
ling the display and interactive behavior. The attributes minScale and
maxScale, e.g., control the visibility of layers for a level-of-detail me-
chanism like the corresponding parameters in SLD. In case of mobile de-
vices, however, we cannot expect that all layers are available. Therefore, it
is reasonable to define a tolerance buffer where the client is free to decide
whether to request a new layer or to depict the current layer with some ac-
ceptable decrease of quality. The attributes minScaleHint and maxS-
caleHint define this tolerance range.

<Layer id="LB" title="roads" pickable="0"
 minScaleHint="0.1" maxScaleHint="0.5"
 minScale="0.2" maxScale="0.4"
 dataSource="roaddb"
 .../>
...
<DataSource name="roaddb"
 format = "sqlite"
 src = "http://<MDS>/GetData..."
 modifyForm = "mod_road.html"
 newForm = "new_road.html"
 />

Figure 2: Example of a Layer element with associated data source

The dataSource attribute of a layer establishes the relation to the cor-
responding database by referring to the attribute name of a DataSource.
As explained in the previous section, some data associated with the layers
have to be stored locally on the device. As simplification we assume that
the data referring to a layer can be represented by a single database relation
which may be a single table or a view referring to one or more tables. The
optional attributes modifyForm and newForm refer to HTML pages for
editing the alphanumeric data properties of existing and newly defined fea-
tures, respectively.

Tiling

The GAC offers also information about a suitable tessellation of a layer
into tiles. Tiles of a layer can be loaded and unloaded if necessary, which is
important for reducing memory consumption. Figure 3 gives an example of
a layer tessellated into rectangular tiles.

<Layer title="roads" minScale="0.2" maxScale="0.4">
 <Tile src="t10.svg" x="20" y=" 0" width="20" height="20"/>
 <Tile src="t11.svg" x="20" y="20" width="20" height="20"/>
 ...
</Layer>

Figure 3: Example of a tiled layer

Processing service declarations

Processing services for a mobile client are declared by the GAC-element
Service. Additionally, there may be services provided by the MDS, e.g.,
for synchronization or polling. Some typical service declarations are de-
picted in Figure 4. A type attribute is used to distinguish the different ser-
vices. According to the type of service, further attributes are present. The
routing service (type="LS") for example refers to a layer (annLayer
attribute) where the calculated routes should be stored.

<Service type = "LS" annLayer="routes"
 src = "http://<server>/rs" />

<Service type = "GEOCODER" annLayer="routes"
 src = "http://<server>/rs" />

<Service type = "MDS" timeInterval="1000"
 src = "http://<server>/MDS" />

Figure 4: Example of Service declarations

2.4 Overall Architecture

Figure 5 illustrates the architecture developed so far. In addition to the part
of the architecture depicted in Figure 1, here virtual clients reflecting the
current state of individual mobile devices are introduced. A virtual client is
instantiated when a mobile device first registers with the MDS and exists
until the user logs out of the system.

Figure 5: The architecture for integrating mobile devices into an SDI

3 MOBILE CLIENT PROTOTYPE

In this section, we will present the prototype of the mobile client developed
in the context of the project OKGIS – Open Disaster Management with free
GIS-Components (OKGIS 2008).

The main task of OKGIS is the development and implementation of a
concept for the administration, usage, visualization and acquisition of geo-
graphic information for disaster management based on open standards. One
of the three focal points of OKGIS is the development of a mobile visuali-
zation and data acquisition tool supporting staff in the field. The implemen-
tation is targeted at mobile devices such as PDAs or TabletPCs and should
support sensors attached to the device. With the help of the mobile applica-
tion, staff in the field may request, view and update geospatial as well as
alphanumeric data. Processing services like routing or geocoding services
should be accessible directly by the viewer. Additional services specific to
disaster management, e.g., support for evacuation scenarios or routing that

SDI

MDS

WMS WFS

virtual client

Viewer

Raster/SVG
DB

alpha-
numeric

d t

DB

sync

wireless network

Mobile device

WCS

processing DB

profiles

Processing
services

takes environmental conditions into account, may be accessed via the
MDS. The implementation has to address the typical working conditions
affecting the mobile device in the field, most important low network band-
width or the absence of any network connection. Even under these condi-
tions, the mobile application should be seamlessly integrated into the SDI
of OKGIS.

The OKGIS-Viewer is based on a mobile SVG viewer that originated
from a previous project (Brinkhoff & Weistkämper 2005). The prototype is
targeted at Windows CE based operating systems like PocketPC, Windows
Mobile, and WinCE.NET. A reasonably high performance was achieved by
using C++ as implementation language.

The mobile application consists of the following modules: The central
visualization component is accompanied by a data store for alphanumeric
data, by sensor and communication interfaces as well as by interaction fa-
cilities for geometrical and alphanumerical data. Figure 6 depicts the struc-
ture of the application. In the sequel, we take a closer look at some of these
modules.

Figure 6: The main components of the prototype of the mobile client

Visualization:
SVG

Raster

DB

Geometrical interaction

Sensors

Display / modification of
alphanumeric data

Integrated
Mobile

Internet Explorer

Communication

Pr
og

ra
m

 a
nd

 c
on

fig
ur

at
io

n
co

nt
ro

lle
r

GUI

GAC

Undo/
Redo

Geodata control:
- Tiling
- Loading / unloading
- Level of detail

M
D

S

S
yn

ch
ro

ni
za

tio
n

P
ro

ce
ss

in
g

se
rv

ic
es

W
M

S

G
P

S
 …

SQL

svgviewer-protocol

Plugins

Authenti-

cation

Sync.
DB

SQL

3.1 Program and Configuration Control

The program and configuration controller manages the life cycle of the ap-
plication.

On program start-up, the layout and functionality of the graphical user
interface (GUI) is dynamically set up from the definition supplied in an
XML document. Additionally, this document provides information of how
to obtain the initial application data. There are two alternatives: Either the
GAC is directly referenced by an URL or the address of an authentication
service is specified. In the latter case, a GAC is returned from the service
after successful login.

The functionality of the mobile client prototype can be extended by plug-
ins. These plug-ins are loaded dynamically during program runtime. The
GUI configuration document specifies the plug-ins to be used.

3.2 Visualization Component

The data structure of the visualization component is based on the SVG
viewer mentioned before. The layers are mapped into an SVG document as
depicted in Figure 7. Each layer corresponds to an image element of the
SVG document. An image element of an SVG document represents raster
or SVG data. An image element either references a data file, a WMS or a
MDS GetData service.

The SVG viewer issues events to the layer manager when the user inte-
racts with the view, e.g., when panning or zooming. The layer manager is
also responsible for loading and unloading of tiles and switching of layer
visibility in response to these events.

Figure 7: Data representation and visualization by the SVG viewer kernel

SVG document

SVG viewer kernel

<image>

<image>

<image>

Layer

Layer

Layer

Layer manager

SVG view

View events

Geom. interaction

Interaction manager
- Object click
- Geometric editing

Visualization

Geometric editing operations may be performed by “drawing” on the view
with a pointing device like a mouse or stylus. These user interactions are
captured by the SVG view and transferred to the interaction manager for
further processing.

3.3 Alphanumeric Data Storage

Alphanumeric data are managed on the mobile client by a database man-
agement system (see also section 2.2).

Among the many available mobile database implementations SQLite was
chosen (SQLite 2008). SQLite shows high performance – even on small
devices – and portable to many operating systems. The source code is in the
public domain. SQLite is a very compact software library implementing a
transactional SQL database engine that is accessible from many different
programming languages. Many projects use SQLite as embedded data sto-
rage, e.g., Mozilla Firefox and Android the mobile phone development kit
created by Google.

SQLite does not require a separate server process nor is there any instal-
lation or configuration necessary. The source code of the database server is
linked directly into the program code. SQL statements are executed by
simple function calls. The entire database (definitions, tables, indices, and
the data itself) is stored as a single file.

When alphanumeric data associated with a layer are requested, the MDS
assembles an SQLite database file and transmits it to the client. The same
method is used for synchronization. When the mobile client re-connects to
the MDS after an offline period, the whole synchronization database file is
sent to the MDS.

3.4 Data Acquisition and Manipulation

Alphanumerical data may be displayed and edited by an integrated standard
dialog. Alternatively, when more advanced layout or formatting is required,
an HTML form may be used (see the DataSource declaration in section
2.3). On Windows CE based devices, the Mobile Internet Explorer is avail-
able as standard web browser.

In general, data from HTML forms are sent to a web server for
processing purposes and the web server returns an HTML page as response,
which is again displayed by the web browser. The mobile application uses
HTML forms in a different way. The form data are directly interpreted to
update the database or to change the visual representation of the associated
layer. For this purpose, a communication protocol between the web brows-
er and the application was introduced that can be used as a URL protocol

with the identifier svgviewer. The protocol provides commands to con-
trol the visualization component and to access the database.

The implementation uses the Mobile Internet Explorer as ActiveX con-
trol that can be directly embedded into the application. The ActiveX control
permits the interception of browser events. Thus, when a user activates a
link, the URL can be checked for the protocol identifier. URLs using the
svgviewer protocol are interpreted by the application; all other URLs
are submitted to standard processing by the web browser.

3.5 Communication Module

The external service invocations are managed by the communication mod-
ule of the mobile application.

The mobile application is able to communicate with several standard
OGC services like the WMS directly. The current version of the mobile
client allows also the direct invocation of OpenLS routing, geocoder and
reverse geocoder services.

Additionally, the communication module handles calls to services pro-
vided by the MDS. Currently implemented are authentication, notification,
synchronization, and data services. The latter transforms WFS data into an
SVG document for visualization and an SQLite database file for alphanu-
meric data handling.

4 APPLICATION IN TOURISM

In addition to the field of disaster management as mentioned in section 3,
mobile geospatial applications in other areas can be realized. A prominent
example is the field of tourism. For example, a historic city guide using the
mobile client was presented by Brinkhoff et al. (2006). A further touristic
application is the mobile Naturpark-Scout introduced in the sequel.

The development of portable information systems is a rapidly expanding
field. The all-encompassing GPS-ization (Schmundt, 2007) is evident due
to the activities of global players like Google and Nokia. There are numer-
ous fast evolving open-source projects around the mobile computing of
georeferenced data. Most of them are based on Java Virtual Machines like
MoWMS (http://www.easywms.com) and Navlet (http://www.navlet.org).
The OKGIS-Viewer has been proved as a mobile client technology which
solves the requests of the map-centric issues of tourism in the area of nature
parks. The modular configuration of data and interface definitions in com-
bination with SVG data allows a wide range of mapping applications for
offline outdoor activities.

 The Naturpark-Scout (http://www.naturparkscout.de) is online since
2007. It is a web application providing maps of the area around the Town
of Bad Wildbad. The projected area is situated in the Black Forest Nature
Park Central/North. Tourists can plan their outdoor activities by generating
individual hiking/nordic walking (NW) and mountain-biking (MTB) trails.
The maps of the area, the generated trails and the points of interest can be
exported to the Naturpark-Scout mobile client, which is based on the OK-
GIS-Viewer. Visitors of the nature park can use the Naturpark-Scout mo-
bile client as a hiking map, which will be centered at their current position
if the device is equipped with a GPS sensor. This project focuses on pro-
viding outdoor activity maps that can be used offline without
GPRS/UMTS/WLAN connections.

4.1 Architecture of the Naturpark-Scout

The functionality of the Naturpark-Scout is divided into the web applica-
tion and the mobile client. A typical use case starts by selecting an area of
interest in the web application. Individual routing is performed by setting a
starting point, points of interest to walk along and an endpoint to finish the
route.

Figure 8: Screenshot of the Naturpark-Scout web interface

The shortest path will be calculated between start and end point. Interme-
diate points can be set to modify the path.

In order to support decisions, an elevation profile following the route is
generated dynamically. The varying conditions of the path are displayed on

top of the profile (color-coded). The accumulated altitude is calculated and
displayed as the amount to climb uphill and downhill along the route.

Figure 9: Schematic view of the functional components of the Naturpark-
Scout. Elements of the web application (upper part). Symbolic data export
(center). Dialogs of the mobile client (lower part).

Figure 9 gives a schematic and user-centered view of the functional com-
ponents of the Naturpark-Scout system. On the server-side (upper part) dif-
ferent dialogs are used to control the application:
• Navigation controls to pan and zoom in fixed scale increments

• Selection tree for map layer visibility

• Routing dialog to configure individual MTB- or NW-trails

• Overview map (shows the map extend in small scale)

• Tour description of selected predefined trails

• Elevation profile of the last individual routed trail

• Export to target (starts the generation of specific data streams)
Functional components of the mobile client are shown in the lower part

of Figure 9. The dialogs are accessible from the menu bar. The file open
dialog is used to select a region containing a set of trails and POIs which
are generated and stored as discrete data exports. The map navigation uses
fixed scale steps to show one of the tiled map sets which are optimized for
each level of detail. A scale bar can be activated from the navigation tool-
bar which can be moved in the map view. The layer dialog is used to con-
trol the visibility of trails and groups of POIs. The POI descriptions are
coded by HTML. They are displayed in a browser window accessible via
POI icons from the map. The browser window contains a map icon for
switching back to the map view.

The GPS receiver is activated from the GPS dialog window. The COM
port listening for the NMEA data stream can be selected. A graphical con-
trol shows the detected satellites. The coordinates of the current position
are displayed if a valid position can be processed from the signal.

4.2 Naturpark-Scout Data Export

The raster map, predefined routes and POIs can be downloaded for usage
on the mobile device which is symbolized in figure 9 (center). The Natur-
park-Scout server processes the area of interest by generating a compressed
archive on the fly. It contains the raster data, SVG-, HTML- and image
files in a structured folder hierarchy. The content of such an archive is
shown in Figure 10.

Figure 10: Structure of one discrete OKGIS-Viewer dataset exported from
the Naturpark-Scout web application. From top to bottom: Data definition
file linking layerlists with data sources. Folder hierarchy containing SVG
data and raster images.

The maps are exported in five levels of detail. Every layer is tiled in
400x400 pixel chunks to meet the requirements of the limited PDA memo-
ry (Figure 9, bottom part). The branches of raster maps, the vector data of
routing results and the grouped POIs are organized in layers. These layers

are described in several layer-specific files (Figure 9: map_lod_X.svg,
poi_group_X.svg) using SVG. A central XML-file is used (Figure 9
upper part: data definition) to build the Geoapplication Context (GAC) by
referencing all of this layer files and group them into layer lists. This con-
text is used to define additional layer constraints like scale settings. Scale
ranges are used to limit the amount of data to be displayed on a single ras-
ter map layer at a given zoom level. Predefined fixed scale steps are used to
display every LOD raster layer without scaling artifacts.

By uncompressing the downloaded archive, the folder structure will be
placed in a time tagged folder (e.g., NPScout_02Feb2008-2239h) as
root node for the POIs-, paths- and maps-subfolder. The data definition file
is stored with a related name (e.g., NPScout_02Feb2008-
2239h.npx). This time-tagged coding is used to determine different
downloads stored on the PDA.

4.3 Naturpark-Scout in the field

The map view is bounded to the current location as long as a valid position
can be processed from the GPS-signal. By changing the location, a blinking
cursor moves over the map. Approaching the border of the map, the display
of the map will be centered again. Depending on the position and the level
of detail, different tiles of the map set are displayed. The time used to load
and unload map tiles is depending on their size and the speed of the CPU. It
is in the range of one to a few seconds. The practical use is restricted by the
hardware capabilities: Most of the mobile devices are neither shock- nor
waterproof. The displays are small and not bright enough under sunlight
conditions. The energy consumption of display and GPS sensors leads to
short durations of 1 to 3 hours. Under good weather conditions, the elec-
tronic hiking map is a very useful outdoor equipment for unknown areas. In
the future, projects like Naturpark-Scout will find wider acceptance due to
the on-going development of outdoor PDAs and the widespread usage of
wearable devices.

5 CONCLUSIONS

In this paper, we proposed an architecture for integrating mobile geospatial
applications into an OGC-compliant SDI. Important aspects supported by
this Mobile Data Service (MDS) are the generation of adequate maps and
geospatial data, the support of offline phases and the supply of context
documents that inform mobile clients about relevant services and datasets.
Furthermore, a mobile client – the OKGIS-Viewer – was presented that is
based on an SVG viewer and interacts with the MDS or directly with geos-

patial services. One application of the mobile client – the Naturpark-Scout
– was introduced.

The next step will be to integrate the presented architecture into the SDI
of OKGIS for supporting disaster management. Further tasks are the use of
the MDS for providing further data formats like OGC KML and for access-
ing SWE (sensor web enabling) services by mobile clients. Finally, further
applications should be supported by the MDS as well as by the OKGIS-
Viewer.

6 ACKNOWLEDGEMENT

Part of this work was done within the project “OK-GIS: Offenes Katastro-
phenmanagement mit freiem GIS”. That project is funded by the German
Ministry for Education and Research. This support is gratefully acknowl-
edged.

7 REFERENCES

Brinkhoff, T. (2008). Supporting Mobile GIS Applications by Geospatial
Web Services, accepted for the 21st Congress of the International Society
for Photogrammetry and Remote Sensing, Beijing, July 2008.

Brinkhoff, T., A. Gollenstede, P. Lorkowski and J. Weitkämper (2006).
“Tourismus und Geoinformatik: Berührungspunkte”, Photogrammetrie,
Fernerkundung, Geoinformation (PFG), Heft 5/2006, 397-404.

Brinkhoff, T. and J. Weitkämper (2005). “Mobile Viewers based on
SVG±geo and XFormsGI”, Proceedings 8th AGILE Conference on Geo-
graphic Information Science, Estoril, Portugal, 2005, 599-604.

Brisboa, N.R., M.R. Luaces, J.R. Parama and J.R. Viqueira (2007). Manag-
ing a Geographic Database from Mobile Devices Through OGC Web
Services. APWeb/WAIM 2007 International Workshops DBMAN 2007,
WebETrends 2007, PAIS 2007 and ASWAN 2007, Huang Shan, China.
LNCS 4537, 174-179.

Huang, C.-H., T.-R. Chuang, D.-P. Deng and H.-M. Lee (2006). Efficient
GML-native processors for web-based GIS: techniques and tools. Pro-
ceedings 14th ACM International Symposium on Advances in Geo-
graphic Information Systems, Arlington., VA, 83-90.

OGC (2005a). Web Feature Service (WFS) Implementation Specification,
Version 1.1, OpenGIS Implementation Specification, 3 May 2005,

http://www.opengeospatial.org/standards/wfs, document
04-094_Web_Feature_Service_Implementation_Specification_V1.1.pdf

OGC (2005b). Web Map Context Documents, Version 1.1.0, OpenGIS Im-
plementation Specification, 19 June 2005, http://www.opengeospatial.
org/standards/wms, document
05-005_Web_Map_Context_Documents_WMC_version_1.1.pdf.

OGC (2005c). OpenGIS Location Services (OpenLS): Core Services,
2 May 2005, http://www.opengeospatial.org/standards/olscore,
05-016_OpenLS_core_services_1.1.pdf.

OGC (2006). Web Map Service (WMS) Implementation Specification,
Version 1.3.0, OpenGIS Implementation Specification, 15 March 2006,
http://www.opengeospatial.org/standards/wms, document
06-042_OpenGIS_Web_Map_Service_WMS_Implementation_Specification.pdf

OGC (2008). Open Geospatial Consortium, http://www.opengeospatial.org.
OKGIS (2008). OKGIS - Open Disaster Management with free GIS-

Components, http://www.okgis.de.
Predic B., D. Stojanovic and S. Djordjevic-Kajan (2006). Developing Con-

text Aware Support in Mobile GIS Framework, Proceedings 9th Interna-
tional Conference on Geographic Information Science, Visegrád, Hun-
grary, 90-97.

Sarjakoski, T., M. Sester et al. (2005). Web Generalisation in GiMoDig –
Towards a Standardised Service for Real-Time Generalisation. Proceed-
ings 8th International Conference on Geographic Information Science,
Estoril, Portugal, 509-518.

Schmundt, H. (2007). How Pocket Positioning Will Change Daily Life.
http://www.spiegel.de/international/spiegel/0,1518,469994,00.html.

SQLite (2008). Software library implementing a SQL database engine.
http://www.sqlite.org.

W3C (2003): Scalable Vector Graphics (SVG) 1.1 Specification, W3C
Recommendation 14 January 2003, http://www.w3.org/TR/2003/REC-
SVG11-20030114.

