
Using a Cluster Manager in a Spatial Database System

Thomas Brinkhoff
Institute of Applied Photogrammetry and Geoinformatics (IAPG)

Fachhochschule Oldenburg/Ostfriesland/Wilhelmshaven (University of Applied Sciences)
Ofener Str. 16/19, D-26121 Oldenburg, Germany

tbrinkhoff@acm.org
http://www.fh-wilhelmshaven.de/oow/institute/iapg/personen/brinkhoff/cluster.shtml

ABSTRACT
An important goal for a spatial database system is to minimize the
I/O-cost of queries and other operations. One essential component
to achieve this objective is the buffer manager. The placement of
the spatial objects on disk pages is another important factor; a
reasonable clustering of the objects helps to minimize the I/O-cost
of queries. However, it is a difficult task to define and maintain an
efficient clustering. In this paper, a cluster manager is proposed,
which re-clusters spatial objects dynamically. The reorganization
is performed using the pages kept in main memory by the buffer
manager. Therefore, no additional disk accesses are required for
non-static spatial databases. For deciding which spatial objects
should be stored together, the requests for the objects are recorded
and analyzed. An experimental performance evaluation compares
the impact of several parameter settings on different spatial que-
ries. It is demonstrated that significant performance gains can be
achieved by using the cluster manager.

1. INTRODUCTION
Considering today’s computers, it can be observed that the speed
of the CPU and the size of the main memory are still dramatically
increasing. In addition, geographic applications have become
more sophisticated and the amount of geo-spatial data seems to
grow with the size of available main memory. However, the time
to access a randomly chosen page stored on a hard disk requires
still about 10 ms. As a result, the gap between CPU speed and
size of main memory on the one hand and I/O-cost on the other
hand has increased considerably. Consequently, the access to
secondary storage is still a bottleneck for executing queries and
other operations by a geographic information system (GIS).
Several techniques are commonly used in order to optimize the
I/O-performance. Two techniques are of special interest in context
of this paper: buffering and clustering. Essential for the perform-
ance gain of a buffer is to keep those pages in main memory,
which are hot spots. Pages no longer required should be dropped
out of the buffer as soon as possible. The most common page
replacement strategy is LRU (least recently used): an LRU buffer
replaces the page that has not been accessed for the longest time.

The placement of objects on disk pages is another important per-
formance factor. In a database system, the assignment of storage
space to a table, the order of inserts and other modifications, the
free capacity of pages, and the size of the objects typically deter-
mine the page where an object is finally stored [5]. However, the
assignment of objects to pages is essential for the performance
when sets of objects are queries. In this case, it is advantageous if
all objects requested by a query are stored in one or few pages,
which requires only few disk accesses. If all objects are stored in
different pages, many pages must be accessed. Then, the best
buffer manager will become powerless. A clustering of related
objects helps to overcome this problem. In spatial database sys-
tems, it is typically assumed that a spatial access method organ-
izes and clusters the spatial objects according to their locations.
However, such approaches for clustering spatial objects are rather
static and level out any further differences between the objects.
For example, it is not reasonable to assume that all spatial objects
in a neighborhood are accessed in the same frequency. Let us
consider an example of mobile vehicles querying the cost for
passing a road. Then, a motorway will be requested much more
often than a nearby track across the fields. Furthermore, the fre-
quency of requests may depend on the daytime or other circum-
stances like holiday periods or special weather conditions [2].
Another problem is that the relation between requested objects
does not (only) depend on the value of a single attribute but on (a
special) combination of attributes. In spatial databases, for exam-
ple, the scale is also of special interest [4]. In such cases, an ade-
quate clustering of data is very difficult to predict. A cluster man-
ager is required that dynamically assigns the objects to their
pages. If a better clustering is found or if the access pattern has
changed, the placement of the objects should be automatically
adapted. Furthermore, a cluster manager should be self-tuning so
that no additional human administration is required because of the
difficulty and effort to predict the clustering of data (“adaptive
record clustering” [9]).
The main contribution of this paper is a cluster manager that co-
operates with the buffer manager. The presented cluster manager
reorganizes the pages that store the spatial objects. These pages
are cached in a buffer in order to limit the I/O-cost of the re-
clustering. Thus, the success of the cluster manager especially
depends on the selection of the spatial objects used for the re-
clustering (candidate set). Furthermore, a cluster manager needs
information for deciding which objects should be stored together
in one page. In order to increase the performance of queries, in-
formation about the requested spatial objects are recorded and
analyzed. Finally, an algorithm must be defined for performing
the assignment of spatial objects using the recorded information.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
ACM-GIS ’01, November 9-10, 2001, Atlanta, GA.
Copyright 2001 ACM 1-58113-000-0/00/0000…$5.00.

In the next section, the design of the cluster manager is presented.
First, the principal guidelines for the design are proposed. The
next topic of that section is the integration of a cluster manager
into a spatial database system. The algorithms of the cluster man-
ager are described in section 3. Section 4 presents an experimental
performance evaluation investigating the effectiveness of the
proposed cluster manager. In section 5, this work is compared
with former ideas from literature. This discussion allows indicat-
ing where further work concerning the cluster manager is reason-
able and required. The paper concludes with a summary.

2. DESIGN OF THE CLUSTER MANAGER
2.1 Principal Guidelines
This section describes the principal guidelines for designing the
cluster manager.

2.1.1 The Candidates
First, we must decide which objects of the spatial database should
be regarded for a potential re-clustering. In order to speed up que-
ries, spatial objects are considered, which are frequently requested
by queries. This aim coincides with the goal of the buffer man-
ager to have frequently requested pages ready in main memory.
Candidate set 1: The set of candidates to be considered for a re-
clustering are those spatial objects, which are stored in pages kept
in main memory by the buffer manager.
This definition assumes that the buffer manager makes its job
well. Furthermore, it indicates that the cluster manager is trig-
gered by the buffer manager. Another objective is to avoid or
restrict an I/O-overhead by the introduction of a cluster manager.
Especially if the spatial database is sufficiently dynamic, the clus-
ter manager can work without any additional disk accesses.
Candidate set 2: A smaller set of candidates consists of those
spatial objects within candidate set 1, which are stored on “dirty”
pages (i.e. pages that require to be written to secondary storage).
If the cluster manager uses candidate set 2, no additional pages
accesses are required compared to the case without re-clustering.
However, in a database where (almost) no objects are changed,
the second set of candidates will contain (almost) no objects. In
this case, a cluster manager cannot restrict the set of candidates to
the dirty pages. Then, additional disk accesses are unavoidable.

2.1.2 The Addressing Schema
The task of the cluster manager is to modify the page where spa-
tial objects are stored in order to improve the clustering. Thus, the
physical address of a spatial object may change frequently. How-
ever, other components of the spatial database system (e.g. spatial
access methods) typically store addresses of the objects. The
change of addresses requires an indirect addressing scheme,
which is not only tolerant to a shifting of an object within a page
but also to the shift of an object to a completely different page.
Therefore, it is assumed in following that spatial objects are ad-
dressed by virtual addresses, which are resolved by an address
table. Of course, other solutions like a lazy update of references
are possible but not topic of this paper (see e.g. [10]).

2.1.3 The Re-clustering
For re-clustering spatial objects, at least three approaches can be
distinguished: 1. All objects of all pages of the candidate set are
completely re-distributed, 2. the objects forming a new discovered
cluster are shifted to new allocated pages, or 3. the objects of a

single page are exchanged with objects of other pages. The first
technique requires high computational power. Using the second
approach, the storage utilization decreases; in order to avoid an
uncontrolled decrease, the cluster manager must try to merge the
remaining pages. The third approach requires that enough space is
available in the pages for storing additional objects. A database
system typically enables the user to control the use of free space
for inserts and updates in a data page [5]. The general goal is to
minimize the effort of reorganizing if a spatial object grows by
performing an update operation. If a cluster manager is used, the
objective is different: a reorganization should be enabled by hav-
ing some extra space on the pages. In the following, it is assumed
that a threshold tins exists, which denotes the remaining free space
on a page for insert operations in percent.

2.1.4 Recording the Query Requests
As mentioned, the cluster manager needs information for deciding
which spatial objects should be stored together in one page and
which not. The optimization goal is to increase the performance
of queries, i.e. to minimize the I/O. Therefore, information about
the spatial objects that are requested by a distinct query are re-
corded and analyzed. This query information should be as simple
as possible. We assume that each query has an unambiguous iden-
tifier, the query id. An object is identified by its object id. Re-
cording the requested objects means that pairs (query id, object
id) are logged. Over the time, the number of such pairs is steadily
increasing. Therefore, the size of this logging information has to
be restricted:
As soon as page drops out of the buffer, also all pairs referencing
a spatial object on this page are deleted. This is the latest moment
where objects of the page can be re-clustered. Furthermore, it is
the time where the most query information is collected concerning
this page. Therefore, the cluster manager will be triggered.
The buffer should keep pages in main memory that are requested
frequently. Such pages are seldom dropped out of the buffer and
would create a large amount of query information. Therefore, the
number of pairs is limited. If a new pair is logged and this limit is
exceeded, the oldest pair will be overwritten.

2.2 Integration of a Cluster Manager
Figure 1 depicts the integration of the proposed cluster manager
into a spatial database system. The arrows in the figure corre-
spond to the flow of control. The figure is explained in following
by considering two typical operations. The figure and the expla-
nation are simplified compared to the reality. Especially, the han-
dling of different tables, of complex spatial objects, or of spatial
access methods is not discussed.

2.2.1 Query Processing
The processing of a query by the database management system
(DBMS) determines spatial objects potentially fulfilling the query
condition. A spatial object is described by a simple geometry like
a minimum-bounding rectangle (MBR) and can be identified by
its object id. This object id must be transformed into a page id by
using the address table (arrow 1). Now, the required page can be
requested from the buffer manager (arrow 2). If a requested page
is kept in main memory, it will be directly transmitted to the
DBMS. Otherwise, the page must be read from secondary storage
(arrow 3). In the most cases, this step requires that another page
must be dropped out of the buffer. According to its internal book-
keeping and the replacement strategy used, the buffer manager

determines a page as victim. The buffer manager triggers the clus-
ter manager before the victim is removed (arrow 4). The cluster
manager must decide, whether a re-clustering of objects should be
performed or not. In the first case, the cluster manager determines
a new assignment of the spatial objects of the candidate set. If a
spatial object is moved to another page, the address table will be
adapted (arrow 5). Then, the new page containing the requested
object is read from secondary storage and is returned to the
DBMS. This spatial object is logged by the cluster manager as the
result of a distinct query (arrow 6).

secondary
storage
containing

buffer
manager

p 1 p n

all pages

storing n pages

query information
(query id, object
...

(query id, object
)...

...
p 1

p n

(object id, page
)...

data of the buffer

cluster manager address table

(2)

(6)

(3)

(4)

(5)

(1)

capacity
information
for all pages:

(page id,
...

p 1
p n

(7)

geographic application

spatial
access method

or other components
of the spatial database

system like query
interpreter or optimizer

on the top of a
geographic information
system

uses

Figure 1. Integration of a cluster manager

2.2.2 Inserting a New Spatial Object
When a new spatial object is inserted, the page must be deter-
mined where the object should be stored. This is also a task of the
cluster manager (arrow 6). For a new object, no query information
is available. Therefore, a reasonable assignment to a page is diffi-
cult. In the following, it is assumed that a write page exists for
storing the new object; other solutions are discussed in section
3.5. The write page is fixed by the buffer manager. If the new
object cannot be inserted into the write page observing the space
management parameter tins, another write page must be deter-
mined. Therefore, the cluster manager requires information about
the free capacity of all (relevant) pages. If one of the pages in the
buffer is able to take the new object (observing tins), it will be
requested from the buffer manager (arrow 7) and it becomes the
new write page. If more than one page of the buffer is able to take
the object, the page with the largest occupied space will be cho-
sen. If no page in the buffer, but a page stored on disk exists for
taking the new object, the buffer manager will read this page from
disk (arrow 3). This page will be the new write page. If more than
one page exists, the page with largest free space will be selected.
If none of the existing pages can store the object (observing tins), a
new write page must be allocated (arrow 7).

3. ALGORITHMS FOR RE-CLUSTERING
One essential question has not discussed yet: How can a cluster
manager decide which objects of which pages should be re-
clustered? This question is not new (see section 5). In this section,
some simple algorithms are presented, which can be integrated in
a spatial database system without huge efforts. According to sec-
tion 2.1.1, we must distinguish two candidate sets. Therefore,
different algorithms are proposed for these two situations. For
simplicity, the discussion is restricted to the case where single

objects are exchanged between the existing pages. Finally, the
question is considered where new spatial objects should be stored.

3.1 Shifting Objects from a Dirty Page
Let us consider the situation where the spatial database is updated
regularly. In this case, “dirty” pages exist, which contain modified
objects. If enough modified pages exist, it is reasonable to use
them (i.e. candidate set 2) for improving the clustering.
A dirty page must be written to secondary storage as soon as it
has to leave the buffer. This time is the latest moment when the
objects of this page can be re-clustered. Then, the cluster manager
will be triggered and objects are assigned to other pages.
In order to determine the objects to be removed from the page, a
list of query identifiers exists. This allows determining how often
a spatial object obj of the page p was queried together with other
objects on page p. This number is denoted as p.queryNum(obj).
The same number can be computed for the other dirty pages of
the buffer in respect to obj. If another page q with a higher num-
ber of matching queries exists and if there is enough free space
for storing obj, it is more appropriate to store obj than p. Starting
with the highest query difference, algorithm A1 tries to shift as
many spatial objects as possible from their original page to a new
page.

p = dirty page which should be dropped out of buffer;
Q = set of dirty pages in the buffer \ p;
D = ∅ ; // heap storing (page,object,query difference)
for all objects obj in p do

for all pages q in Q do
if (q.canTake(obj) && (q.queryNum(obj)-p.queryNum(obj)>0))

D.insert(q,obj,q.queryNum(obj)-p.queryNum(obj));
while ((D ≠ ∅) && (p ≠ ∅)) do {

d = D.getAndRemoveFirst();
if (p.contains(d.object) && d.page.canTake(d.object)) {

d.page.add(d.object); // object & query information
p.remove(d.object);

}}

Figure 2. Algorithm A1 in pseudo-code
Figure 2 depicts the algorithm A1. The sorting of the heap D guar-
antees that the objects with the highest query differences will be
relocated first, if an object fits into another page. This is tested by
the method canTake. The function contains tests whether an
object is (still) stored in a page or not. The methods add and re-
move perform the shift of an object and of its query information.

3.2 Shifting Objects to a Dirty Page
After removing spatial objects from the page p, which should be
dropped out of the buffer, we should consider the reverse opera-
tion, i.e. it may also be reasonable to shift spatial objects to this
page. First precondition is that there is enough space on p to take
additional objects. Spatial objects like polygons are typically
variable-sized. Therefore, a threshold tcins is assumed in the fol-
lowing that denotes the percentage of free space of the page re-
quired for performing this step. Note that this threshold is not
identical to the threshold tins. Typically, tcins is much smaller than
tins.

p = dirty page which should be dropped out of buffer;
Q = set of dirty pages in the buffer \ p;
D = ∅ ; // heap storing (page,object,query difference)
if (p.freeSpace > tcins)

for all pages q in Q do
for all objects obj in q do

if (p.canTake(obj) && (q.queryNum(obj)-p.queryNum(obj)>0))
D.insert(q,obj,q.queryNum(obj)-p.queryNum(obj));

while ((D ≠ ∅)) && (p.freeSpace > tcins)) do {
d = D.getAndRemoveFirst();
if (p.canTake(d.object)) {

p.add(d.object); // object & query information
d.page.remove(d.object);

}}

Figure 3. Description of algorithm A2 in pseudo-code

Spatial objects stored in other dirty pages have to be investigated
whether they should be shifted to page p or not. An object obj will
be better stored on page p than on its original page q if the query
difference p.queryNum(obj) - q.queryNum(obj) is larger than 0.
The objects with the largest differences should be shifted to p. A
description of this algorithm A2 is given in figure 3. Because al-
gorithm A2 requires a sufficient free capacity in the page p, algo-
rithm A1 should be performed before A2. If A2 find no objects to
be shifted, the page may become under-utilized for some period.

3.3 Re-clustering Dirty Pages in the Buffer
The two algorithms described in the previous sections re-cluster
the objects of the page, which must leave the buffer. However,
there may be one disadvantage using these algorithms: A page is
dropped out of the buffer, because it has not been accessed for a
longer time. Therefore, starting an optimization using such a page
may be less effective than optimizing pages that are hot spots.
Two questions arise: Which page p should be chosen for starting a
re-clustering? When should the re-clustering be performed?
In principle, all pages of a candidate set could be chosen. How-
ever, improving the clustering of m objects stored on n pages is a
rather costly task. Therefore, it seems reasonable to choose one
page from the candidate set as starting point like in the algorithms
A1 and A2. First, we consider only candidate set 2. Then, the hot-
test spot is the dirty page which has the highest number of objects
retrieved by queries. This page can be determined by using the
query information of the pages. For this page, the algorithms A1
and A2 can be applied. However, if the hottest spot is always the
same, choosing it repeatedly as starting point for the re-clustering
is not very effective. Therefore, it is more reasonable to select the
page p (more or less) arbitrarily from the set of dirty pages. In the
following, the algorithms A1 and A2 will be denoted as B1 and B2
if the starting page p is selected from the set of dirty pages using a
uniformly distributed random function. The algorithms will be
denoted as C1 and C2 if the probability of a page to be selected is
correlated to the number of objects retrieved from this page.
The less disk accesses are required by queries the better is the
clustering. In other words, if no page is dropped out of the buffer,
the clustering is perfect. The more pages are dropped out of the
buffer, the more necessary is a reorganization. Therefore, it is
reasonable to start re-clustering of dirty pages staying in the
buffer when a page is dropped out of the buffer. This leads to a
self-tuning re-clustering.

3.4 Re-clustering Unmodified Pages
In the previous three sections, only dirty pages have been consid-
ered. Therefore, it was possible to reorganize all of them without
any harm to the I/O-performance. In the case, where (almost) no
dirty pages exist, we cannot use the presented algorithms without
any change. If we apply them to candidate set 1 instead of candi-
date set 2, in the worst case all pages in the buffer would be
changed and must be written to secondary storage. As result, the
I/O-cost would increase significantly. Therefore, the set of pages
used for reorganization must be limited.
In the following, N denotes the number of pages, which should be
considered for a re-clustering. If the number of dirty pages DN is
equal to N or exceeds N, the standard algorithms can be used.
Otherwise, we have to select N minus DN unmodified pages from
candidate set 1 as additional pages. One possibility is to select the
extra pages arbitrarily. Another option is to select the pages with a
probability correlated to the number of retrieved objects.

3.5 Placement of New Spatial Objects
In section 2.2.2, a simple technique for determining the data page
of a new spatial object has been described. For a more intelligent
placement, it is necessary to know more about the new object.
One common technique is to use an attribute for determining the
place of a new record. This attribute may be a particular attribute
like the location of a spatial object. However, such an approach
may be of decreased effectiveness in a database system using a
cluster manager, because the cluster manager is not restricted to
consider the spatial attribute for reorganizing the objects.
Another technique is to hand over an object to the insert algo-
rithm, which is already stored in the spatial database. This exist-
ing object should have a high similarity to the new object (e.g.
according to its location, scale, type and / or – in spatiotemporal
databases – to its motion). In this case, the algorithm can insert
the object into the page of the given spatial object if the capacity
is sufficient. Otherwise, a reorganization of the page using algo-
rithm A1 may be reasonable in order to create the required space.

4. PERFORMANCE EVALUATION
In this section, the effectiveness of the proposed cluster manager
should be investigated. The spatial database used in the following
experiments is taken from a desktop mapping software [8] repre-
senting the surface of the earth. It consists of 16 different layers.
These layers represent area objects like elevation levels and lakes
as well as line objects like rivers and boundaries. The unorganized
data has a size of over 13 MB describing 31.364 objects.
For evaluating the effectiveness of the clustering, the properties of
the initial dataset are important. It is simple to have large per-
formance gains by a clustering technique, if all objects are arbi-
trarily mixed before the clustering starts. This is not done here.
The original data is organized according to spatial aspects as well
as to thematic aspects: the data space is divided into 256 cells;
these cells are ordered by a z-order [7], which means that a spatial
ordering is applied. Within each cell, the spatial objects are or-
dered by the number of their level. The objects were inserted into
the database in the original order using the insert algorithm de-
scribed in section 2.2.2. The space management parameter tins was
set to 70%, which is typical for real databases. The block size was
8 KB; tcins was set to 2% of the block size. The resulting database
consists of 2,446 data pages.
The query data are constructed from a geographical database stor-
ing the population and the location of 9,824 cities all over the
world. A query set uses the locations of these cities. In order to
simulate a realistic query behavior, the probability of a location to
be included into the query set is correlated to number of inhabi-
tants of the corresponding city. One location is allowed to be
included into a query set several times. A point query determines
in a filter step [6] all spatial objects whose MBR contains the
corresponding city location. A window query computes in the
filter step all spatial objects whose MBR intersects the query rec-
tangle. The centers of the windows correspond to the city loca-
tions. The queries were processed using an R*-tree [1].
For each test series influenced by a random function, the experi-
ments were performed three times. In this case, the average result
is presented. The data files, the query files, and the exact results
of the experiments can be downloaded from the web site given on
the first page of this paper.

4.1 Comparing the Algorithms
The first experiments compare the different algorithms presented
in section 3. The tests were done with an LRU buffer, which
stores up to 10% of the complete dataset. The database was re-
clustered by performing 5,000 window queries having an exten-
sion of 0.01% of the extension of database for the test series a and
b (which corresponds to 4 km in the west-east direction and 2 km
in the north-south direction). For the test series c and d, the exten-
sion is 0.1% (= 40 km and 20 km). 10% of the window queries
were update queries, i.e. they update all objects of their query
result. After executing these queries, further queries have been
performed without a re-clustering only measuring the disk ac-
cesses. These queries were constructed like the queries before, but
with another initialization of the random generator in order to
avoid same query sets. For the test series a and c, 5,000 point
queries were performed; for b and d, 5,000 window queries of the
same extension as before were computed. The number of disk
accesses for these queries are compared to the number of the disk
accesses required by the same queries before the re-clustering has
been done. Before each step, the content of the buffer has been
cleared for reasons of comparability. The query information was
recorded in arrays with a maximum capacity of 100 pairs of query
and object identifiers per page. The parameters of this comparison
are the default values of the following experiments.

0
5

10
15
20
25
30
35
40

A1 A1+A2 B1 B1+B2 C1 C1+C2

pe
rf

or
m

an
ce

 g
ai

n
(in

 %
)

a
b
c
d

0
500

1000
1500
2000
2500
3000
3500

A1 A1+A2 B1 B1+B2 C1 C1+C2

sh

ift
ed

 o
bj

ec
ts

a/b
c/d

Figure 4. Comparison of the different algorithms

The first diagram of figure 4 shows the performance gains in per-
cent compared to the case without performing the clustering algo-
rithms. The second diagram depicts the number of objects shifted
between different pages. First, we can observe that the perform-
ance gains of applying two algorithms are larger than the per-
formance gains of applying only one algorithm. This result could
be expected and is correlated to the number of reorganized spatial
objects. A comparison of B1 with C1 and of B1+B2 with C1+C2
shows a better performance and more shifted objects for B1 and
B1+B2. That means, the idea of selecting the pages to be re-
clustered with a probability, which is correlated to the access
frequency of a page, has not been successful. An arbitrary selec-
tion is more efficient (and simpler to implement). In these test
series, the combination of A1 and A2 causes a performance gain
of almost 35% and the combination of B1 and B2 of about 30%.
These two combinations are competed best. Especially conspicu-
ous is the fact that A1+A2 reaches this result with a considerably

smaller number of moved objects than B1+B2. Hence, these two
combinations will be investigated detailed in the following.

4.2 Changing the Parameters
Now, the frequency of update queries and the number of queries
in the re-clustering phase have been changed. The first change
influences the size of the candidate set, the second the number of
possible reorganizations. Figure 5 depicts the main results.

6000

8000

10000

12000

14000

0% 5% 10% 20%

di

sk
 a

cc
es

se
s

A1+A2, PQ
B1+B2, PQ
A1+A2, WQ
B1+B2, WQ

frequency of updates

6000

8000

10000

12000

14000

0 1000 5000 20000

di
sk

 a
cc

es
se

s

A1+A2, PQ
B1+B2, PQ
A1+A2, WQ
B1+B2, WQ

number of queries

Figure 5. Influence of the frequency and number of updates
The percentage of update operations influences the size of the
candidate set for a re-clustering because the number of dirty pages
in the buffer increases with the percentage of update operations.
In the former tests, this percentage has been 10%. For the experi-
ments depicted by the first diagram of figure 5, this percentage
has been varied. 0% means no re-clustering at all because no dirty
pages exist. The diagram depicts the I/O-cost for performing
5,000 point queries (PQ) and 5,000 window queries (WQ) having
an extension of 0.1% after re-clustering the dataset during 5,000
window queries (with an extension of 0.1%). These extensions
will also be used in the following experiments. The more updates
are executed, the less disk accesses are required after the reor-
ganization. However, the savings decrease by increasing the
number of updates. A similar effect is shown by the second dia-
gram of figure 5. In that case, the period for performing the reor-
ganization has changed by changing the number of window que-
ries between 0 (= no re-clustering) and 20,000 (= quadrupled
period of time compared to the experiments before). We can ob-
serve a large decrease between 1,000 and 5,000 queries. Between
5,000 and 20,000 queries, the decrease is considerably smaller so
that a further reorganization (without a change of the query pro-
file) does not let expect a further large decrease of the disk I/O.
For the case that no updates occur, in section 3.4, the idea has
been presented to extend the candidate set by unmodified pages in
order to achieve a given size N. In the following experiments, the
additional candidates are arbitrarily selected. The frequency of
update queries was set to 0%. Because the algorithms A1 and A2
are triggered by dirty pages, these algorithms are not investigated.
Instead, figure 6 shows only the results for B1+B2. It gives N as
percentage of all pages stored in the buffer; 5% means, e.g., that
N has the value of 12. The diagram shows that considerable per-
formance gains can be achieved, however, on the cost of addi-
tional write operations during the optimization. If we count the
number of these write operations and add them to the read ac-

cesses while performing the same number of queries as in the
optimization phase, still a substantial gain remains (see the test
series with the extension ‘incl. writes’). The increase decreases
with a higher number of extra pages in this case.

0
10
20
30
40
50

2.5% 5% 10% 15% 20%pe
rf

or
m

an
ce

 g
ai

n
(in

%
)

PQ, B1+B2, excl. writes
PQ, B1+B2, incl. writes
WQ, B1+B2, excl. writes
WQ, B1+B2, incl. writes

portion of extra pages

 Figure 6. Impact of extra pages added to the candidate set
Another interesting aspect is the impact of the buffer size on the
effectiveness of the re-clustering. Figure 7 illustrates this influ-
ence. The experiments were done with an LRU-buffer consisting
of 5%, 10%, and 20% of all pages. Figure 7 demonstrates the
different behavior of the algorithms. The combination of algo-
rithms A1 and A2 works relative independently of the buffer size;
the change of the buffer size from 5 to 20% increases the per-
formance gain from about 26% to 38%. For the combination
B1+B2, the performance gain gets up from about 18% to 47%.

0
10
20
30
40
50

5% 10% 20%pe
rf

io
rm

an
ce

 g
ai

n
(in

 %
)

A1+A2, PQ
A1+A2, WQ
B1+B2, PQ
B1+B2,WQQ

buffer size

Figure 7. Impact of the size of the buffer

The query information of the previous tests was recorded in ar-
rays with a maximum size of 100 pairs of query and object identi-
fiers per page. This number is rather high. Figure 8 depicts the
performance gains also for smaller arrays. The results show that a
maximum capacity of 12 entries achieves similar improvements
as 100. 12 pairs mean a storage overhead of about 2%.

20

25

30

35

40

3 6 12 25 50 100

pe
rf

or
m

an
ce

 g
ai

n
(in

 %
)

PQ, A1+A2
PQ, B1+B2
WQ, A1+A2
WQ, B1+B2

array size

Figure 8. Impact of the arrays storing the query information

Final tests are done with a query set having (almost) no correla-
tion. These query points are 5,000 randomly selected center
points of the polygons forming the map. In this case, the cluster
manager achieves performance gains of only 2%.

5. RELATED AND FUTURE WORK
For demonstrating the soundness of the cluster manager, some
simple algorithms, which are easy to implement, have been pro-
posed for computing the objects to be shifted. The performance
investigations have shown that these algorithms have done their
job quite well. However, more sophisticated and more efficient
algorithms for computing clusters have been proposed in litera-
ture. The article of Jiawei Han et al. [3] gives an excellent survey
on spatial clustering methods, however, with the focus on data

mining. An obvious and interesting question is, whether and how
those algorithms can be integrated in the presented framework
and what are the impacts on the performance compared to the
simple algorithms. One task, which has been only shortly dis-
cussed, concerns the update of references. This job is done by an
address table. However, solutions that are more elegant exist, e.g.,
the on-line reorganization algorithm of Zou and Salzberg [10].
Another, not satisfying aspect concerns the triggering of the re-
clustering for the case that it is not triggered by a dirty page drop-
ping out of the buffer (i.e. in the case of B1, B1+B2, C1, and
C1+C2). Then, see figure 4, the number of shifted objects is
rather high compared to the case where the algorithms A1 and
A1+A2 are applied. However, the performance improvements
have been rather small (if there have been any) compared to A1
and A1+A2. This behavior indicates that the re-cluster algorithms
are triggered too often or that the algorithms re-organize too
early.

6. CONCLUSIONS
In this paper, a self-tuning cluster manager for spatial database
systems has been presented, which dynamically adapts the clus-
tering of spatial objects to the current query profile. The proposed
cluster manager closely cooperates with the buffer manager. The
aim of this cooperation is to limit the I/O-cost of the reorganiza-
tion. For non-static databases, it can be expected that no addi-
tional disk accesses are required for performing the re-clustering.
For demonstrating the soundness of the approach, algorithms have
been proposed for selecting the spatial objects from a set of can-
didates and for computing the page where a new object should be
stored. These algorithms have been integrated into an experimen-
tal framework. Tests with geo-spatial datasets have been per-
formed. The major results of the performance evaluation have
been: 1. The presented approach allows a significant performance
improvement if a correlation between the queries exists. 2. With a
frequency of update queries of 5% or 10%, the clustering was
considerably improved without any additional disk accesses.

7. REFERENCES
[1] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger: “The

R*tree: An Efficient and Robust Access Method for Points and Rec-
tangles”, ACM SIGMOD Conf., Atlantic City, NJ, 1990, 322-331.

[2] T. Brinkhoff: “Generating Network-Based Moving Objects”. 12th
International Conference on Scientific and Statistical Database Man-
agement, Berlin, Germany, 2000, 253-255.

[3] J. Han, M. Kamber, and A.K.H. Tung: “Spatial Clustering Methods
in Data Mining: A Survey”, in: H. Miller and J. Han (eds.): “Geo-
graphic Data Mining and Knowledge Discovery”, Taylor and Fran-
cis, 2001.

[4] P. van Oosterom: “Reactive Data Structures for Geographical Infor-
mation Systems”, Oxford University Press, 1993.

[5] Oracle Corp.: “Oracle 8i Concepts, Release 8.1.5”, Manual, 1999.
[6] J.A. Orenstein: “Redundancy in Spatial Databases”, ACM SIGMOD

Conference, Portland, USA, 1989, 294-305.
[7] J.A. Orenstein and T.H. Merrett: “A Class of Data Structures for

Associative Searching”, 3rd ACM SIGACT/SIGMOD Symposium on
Principles of Database Systems, 1984, 181-190.

[8] Rossipaul Medien GmbH: “Der große Weltatlas – Unsere Erde mul-
timedial (CD-ROM Edition)”, 1996.

[9] C.T. Yu, C.-M. Suen, K. Lam, and M.K. Siu: “Adaptive Record
Clustering”, ACM TODS, Vol. 10, No. 2, June 1985, 180-204.

[10] C. Zou and B. Salzberg: “Safely and Efficiently Updating Refer-
ences During On-line Reorganization”, 24th VLDB Conference, New
York, NY, 1998, 512-522.

