
Proceedings of the 6th AGILE
Dates – Lieu

A PORTABLE SVG-VIEWER ON MOBILE DEVICES
FOR SUPPORTING GEOGRAPHIC APPLICATIONS

Thomas Brinkhoff

Institute of Applied Photogrammetry and Geoinformatics (IAPG),
Fachhochschule Oldenburg/Ostfriesland/Wilhelmshaven (University of Applied Sciences),

Center of Excellence for Geoinformatics (GiN)
Ofener Str. 16/19, D-26121 Oldenburg, Germany

e-mail: Thomas.Brinkhoff@fh-oldenburg.de
http://www.fh-oow.de/institute/iapg/personen/brinkhoff/

1. INTRODUCTION

An important development in the area of Geographic Information Science is the use of
the eXtensible Markup Language (XML) [1] for representing, transmitting and visualizing
spatial data. XML allows the definition of markup languages. A well-known example is the
Geography Markup Language (GML) [2] as an XML encoding of geographic features.
Current Geographic Information Systems (GIS) already support GML. Another – more
general example – is SVG. Scalable Vector Graphics [3] is a standard of the W3C
consortium for representing vector data.

Location-based services are another important development. The development of
mobile applications is strongly influenced by the introduction of new mobile communication
standards. Currently, the (intermediate) standard GPRS has been launched in Europe. By
introducing the new mobile communication standard UMTS, this trend will be dramatically
enforced. The appearance of mobile applications has also an impact on the devices used for
presenting data: Instead of personal computers and workstations, Personal Digital
Assistants (PDAs) or mobile telephones are used as Internet clients. However, the
computing power of such devices is rather restricted compared to traditional computers. In
addition, the speed and throughput of wireless networks are limited and are subject to large
variations.

In this paper, the support of XML-represented simple features on mobile devices will be
investigated. In order to be independent of the operating system of the mobile device, Java
will be assumed as programming language. The paper starts with a presentation of existing
XML encodings for the representation of geographic features (sect. 2). The variants and
limitations of Java on mobile devices is topic of the next section (sect. 3). Then the
processing of XML documents is discussed (sect. 4). The fifth section characterizes a
corresponding object model. Observing this model and the limitations and differences of the
Java versions, SVG parsers and SVG viewers are designed. The paper concludes with a
summary (sect. 6).

2. XML FOR REPRESENTING GEOGRAPHIC FEATURES

This section describes the object models and specifications that are required for
representing simple features using XML.

2.1 The Geographic Markup Language (GML)
For the XML-based representation of geographical features, the Open GIS Consortium

(OGC) proposed the Geography Markup Language (GML) [2]. The object model of GML is
based on the well-known simple feature model of the OGC [4]. In order to establish

Thomas Brinkhoff: „A Portable SVG Viewer on Mobile Devices for Supporting Geographic Applications“,
Proceedings 6th AGILE Conference on Geographic Information Science, Lyon, France, 2003, Presses
Polytechniques et Universitaires Romandes, pp. 87-96.

2 6th AGILE − Lyon 2003

relationships between features and their geometry, a set of pre-defined properties are used
by GML. The following example (fig. 1) shows an XML representation of a city. The city has
the non-spatial properties name, id, and population. Furthermore, it has two spatial
properties: location describes the point geometry of the city center and extentOf the
polygon of the city boundary.

<?xml version="1.0"?>
<cities xmlns="http://www.geodbs.de/xml" xmlns:gml="http://www.opengis.net/gml">
 <city>
 <name>Oldenburg</name>
 <id>3403000</id>
 <population>153531</population>
 <gml:location>
 <gml:Point>
 <gml:coord>
 <gml:X>8.2275</gml:X>
 <gml:Y>53.1375</gml:Y>
 </gml:coord>
 </gml:Point>
 </gml:location>
 <gml:extentOf>
 <gml:Polygon>
 <gml:outerBoundaryIs>
 <gml:LinearRing>
 <gml:coordinates>
 8.214289,53.087776, 8.277027,53.099326, 8.284276,53.121173,
 8.305773,53.148083, 8.300405,53.162775, 8.299069,53.171417,
 8.279517,53.191205, 8.226077,53.200909, 8.188254,53.19307,
 8.173382,53.184449, 8.153453,53.165192, 8.164244,53.11119,
 8.20185,53.115248, 8.204879,53.089616, 8.214289,53.087776
 </gml:coordinates>
 </gml:LinearRing>
 </gml:outerBoundaryIs>
 </gml:Polygon>
 </gml:extentOf>
 </city>
</cities>

Fig. 1 Example of GML.

For converting GML or other XML documents into another XML representation, the
usage of XSL transformations is suitable. The transformation part of XSL (Extensible Style
Language) [5] converts an XML document into another XML encoding by using XSL
stylesheets.

2.2 Scalable Vector Graphics (SVG)
A large amount of spatial data is represented by vector data. However, there exists no

general standard for representing vector data in the Internet. One typical solutions of this
problem in the field of GIS is the usage of raster maps, which are dynamically generated on
the server site. A restricted functionality of the client and a high data volume are the results.
Both consequences concern especially mobile devices because they should work
autonomously in order to avoid further data requests and because of the restricted
throughput of wireless network connections. Another solution is the use of proprietary vector
formats. The main disadvantage of such an approach is the missing standardization of those
formats.

A data format for vector data is required that is flexible as well as standardized.
Therefore, an obvious solution is using an XML-based data representation. A promising
candidate is the graphical standard SVG (Scalable Vector Graphics). The version 1.0 of
SVG got the status as a W3C recommendation in September 2001 [3]. It has many features

A Portable SVG-Viewer on Mobile Devices for Supporting Geographic Applications 3

that allow representing and visualizing cartographic information [7]. SVG supports not only
zooming, panning, and the selection of objects, but also the manipulation of geometric
objects. The following geometric shapes are supported by SVG:

• rectangles (rect element),
• circles and ellipses (circle and ellipse element),
• line segments and sequences of line segments (line and polyline element),
• polygons without holes (polygon element).

The path element allows a more general approach for defining shapes. A path

consists of a sequence of connected or unconnected points. Connections between points
may be line segments, quadratic and cubic Bezier curves, or elliptical arc curves. For
examples, a path allows constructing multi-polygons with holes. For labels and annotations,
the text element can be used. Fig. 2 shows a small SVG document. The visualizations of
this and of another SVG document are depicted in fig. 3.

<?xml version="1.0"?>
<?xml-stylesheet href="svg.css" type="text/css"?>
<svg width="120" height="120">
 <g transform="scale(0.5)">
 <line x1="20" y1="20" x2="44" y2="54" style="stroke:red;"/>
 <rect x="60" y="10" width="24" height="34" style="stroke:rgb(0,0,0); fill:none;"/>
 <g id="contents" transform="translate(30,40)" style="stroke:red; fill:rgb(0%,75%,0%);">
 <rect x="30" y="12" width="24" height="34" visibility="normal"
 transform="translate(-30,-20)"/>
 <circle cx="50" cy="52" r="24" style="visibility:normal;"/>
 </g>
 <g id="group1">
 <rect x="70" y="52" width="24" height="24" rx="9" ry="9" style="fill:yellow;"/>
 <text x="0" y="70" style="font-size:7;">TEXT 1</text>
 <g>
 <line x1="30" y1="90" x2="100" y2="90" style="stroke:#0000ff;"/>
 <text x="30" y="90" style="alignment-baseline:auto; font-family:Arial;
 font-size:16; font-style:italic; font-weight:bold; text-decoration:underline;
 text-anchor:start;">
 Hello
 </text>
 </g>
 </g>
 <ellipse cx="5" cy="55" rx="20" ry="40" class="green"/>
 <polyline points="50,50 75,50 90,75 120,80 90,60"/>
 <polygon points="15,5 30,1 35,15 15,10" transform="translate(30,0)"
 style="fill:aqua; stroke:maroon;"/>
 <path d="M 5 5 L 20 5 l 0 15 h -15 Z M 10 10 L 10 15 L 15 15 L 15 10 Z"
 style="fill:pink; stroke:teal;"/>
 </g>
</svg>

Fig. 2 Example of an SVG document.

For standard Internet browsers on PCs and workstations, it can be expected that they
will soon support SVG without requiring additional plug-ins. However, for devices like PDAs
or mobile telephones, additional software is required. Furthermore, the power of such “micro
viewers” is too limited for supporting the complete definition of SVG. The SVG version 1.1
[8], which got the status as a W3C recommendation in January 2003, introduces so-called
profiles. They allow defining restricted subsets of SVG. Currently, two profiles for mobile
devices are proposed [9]: SVG Tiny for mobile phones and SVG Basic for PDAs. In this
paper, we restrict SVG to those tags that are required for representing simple geographical
features and that can be processed on current mobile devices.

4 6th AGILE − Lyon 2003

Fig. 3 Visualization of SVG documents by Adobe’s SVG viewer [6].

3. JAVA ON MOBILE DEVICES

On PDAs we currently find three different operation systems: PocketPC (based on
Windows CE), PalmOS and Epoc. On mobile phones, the situation is even more device-
specific. Consequently, a programming language for such devices should be as much
independent of the operating system as possible. The most common programming language
fulfilling this requirement is Java. However, the following section will show that we have to
use different versions of Java mainly depending on the characteristics of the mobile device.

3.1 PersonalJava
Especially for PDAs, Sun defined PersonalJava. PersonalJava uses Java 1.1.8 as its

base with adding security features from Java 2 [10]. The class library is a subset of the
standard library. The packages java.io for a file and stream handling and java.net for
network support are included. The graphic library is of special interest for representing and
visualizing geometries. It corresponds (with some exceptions) to the AWT (Abstract Window
Toolkit) of Java 1.1.8. The class java.awt.Graphics allows drawing and filling
rectangles, ovals, circular or elliptical arcs, and polygons (with holes) and drawing line
segments, sequences of line segments, and texts. Bitmaps are supported. The coordinates
are integer numbers and no affine transformations are provided. Classes representing
geometric primitives as in Java 2 are missing.

3.2 The Mobile Information Device Profile for the Java 2 Micro Edition
For supporting devices like mobile telephones, two-way pagers, and wireless-enabled

PDAs, Sun defined the Mobile Information Device Profile (MIDP) for the Java 2 Micro Edition
(J2ME). The version 1.0a [11] was published in December 2000. The new version 2.0 dates
from November 2002 [12]. The MIDP is designed to operate on top of the Connected
Limited Device Configuration (CLDC). A Personal Digital Assistant Profile (PDAP) has not
been specified, yet. Fig. 4 depicts the architecture of Java using CLDC and MIDP.

A Portable SVG-Viewer on Mobile Devices for Supporting Geographic Applications 5

Fig. 4 Architecture of Java on mobile devices.

The minimum hardware requirements of the MIDP include a 96x54 display with an
aspect ratio of approximately 1:1. “One-handed” keyboards like the keyboard of a phone,
“two-handed” keyboards like a computer keyboard, and / or touch screens are expected.
The minimum memory requirements are 128 KB (version 1.0) or 256 KB (version 2.0) of
non-volatile memory for the MIDP components, 8 KB of non-volatile memory for application-
created persistent data, and 32 KB (version 1.0) or 128 KB (version 2.0) of volatile memory
for the Java runtime. A two-way, wireless networking with limited bandwidth is expected.

The class library is a very limited subset of the Java 2 class library. The package
java.net is replaced by the package javax.microedition.io that supports network
connections. The classes for the user interface are bundled in the package
javax.microedition.lcdui. The included class Graphics allows drawing and filling
rectangles, ovals, and circular or elliptical arcs, and drawing line segments, bitmaps, and
texts – the filling of polygons is not supported. The MIDP version 2.0 added the support of
filled triangles. The coordinates must be integer numbers – the floating-point types float
and double are not supported by the MIDP! Thus, affine transformations are not provided.
Again, classes representing geometric primitives as in Java 2 are missing.

4. THE PROCESSING OF XML ON MOBILE DEVICES

The processing of XML documents requires the parsing the documents. On a PC or a
workstation, the parsing and further processing is relatively unproblematic. Necessary tools
exist and most programming languages have libraries supporting XML. However, for
location-based services, small mobile devices like PDAs and mobile phones are used. On
such devices, the standard XML libraries of Java cannot be used. Therefore, the question
should be investigated, how XML-represented geographic features can be processed on
such devices.

4.1 Java API for XML Processing
Sun defined a lightweight API (application programming interface) for parsing XML

documents. This Java API for XML Processing (JAXP) [13] allows the integration of concrete
parser implementations. Two types of processing are supported: an event-driven approach,
which is defined by the Simple API for XML (SAX), and a tree-based approach that builds up
the complete document in main memory. This second representation stores the Document
Object Model (DOM). An implementation of JAXP is, for example, the Xerces Java XML
Parser provided by the open-source project Apache XML [14].

JAXP implementations have two severe disadvantages: First, they are based on the
libraries of Java 2 and, second, their size must be measured in megabytes. Therefore, they
cannot be used on mobile devices.

6 6th AGILE − Lyon 2003

4.2 kXML
The open-source project kXML [15] [16] provides an XML parser suitable for all Java

platforms including the Java 2 Micro Edition. Because of its small size (the compiled classes
of version 1.21 need about 37kb), it is especially suited for applets or Java applications
running on mobile devices like PDAs or MIDP enabled mobile phones. kXML was originally
developed at the AI unit of the University of Dortmund. The kXML parser (version 1)
supports two types of parsing: Using the request-oriented approach (“pull parsing”), a
program must request the next tag or text of the document by itself – in contrast to SAX that
calls user-defined methods in case of such an event. In addition, a DOM can be constructed.

5. OBJECT MODEL FOR XML-REPRESENTED SIMPLE FEATURES ON MOBILE
DEVICES

For developing a Java object model for representing simple geographic features on
mobile devices, we first have to consider which SVG elements are required for transforming
GML into SVG (table 1).

GML geometry SVG element
Box rect (rectangle)
Point There is no obvious counterpart for a point. Possible solutions are the use of

rectangles (rect element), circles (circle element) or polygons
(polygon element) for depicting symbols at the position of the point.

LineString line (for line segments), polyline or path (for chains)
Polygon polygon (for polygon without holes) or path (for polygons with holes)
MultiPoint, MultiCurve,
MultiPolygon,
MultiGeometry

The g element allows a definition of groups that can be considered as a layer
or loosely coupled collection. A tighter coupling can be reached by one
path element for representing a collection.

Table 1 Correspondence between GML and SVG elements.

Labels and annotations can be handled by the text element of SVG. Such an SVG
document can be parsed using the kXML parser. We implemented an SVG parser that
supports all SVG shapes (i.e. rect, circle, ellipse, line, polyline, and polygon),
the path element with all straight connections and moves, the text element (without
included style changes), and all transformations of the transform attribute. The SVG
parser is based on the kXML parser (version 1.21) and works for PersonalJava as well as
for the MIDP version.

Furthermore, a spatial data structure is necessary for organizing the resulting shapes
according to their spatial properties. In our implementation, a partially ordered main-memory
R-tree is used for this purpose [17]. The classes of this package are also independent of the
Java version.

For representing the shapes, suitable Java classes are required. These classes should
support at least the visualization of the shapes and their manipulation by affine
transformations. In order to improve the comprehensibility, the structure and the methods of
these classes are similar to the Java 2 geometry classes from the package
java.awt.geom. In that package, the class java.awt.Graphics2D is responsible for
displaying the geometries. In PersonalJava as well as in the MIDP, the Graphics class is
predefined. Therefore, each shape class implements its visualization by using the restricted
capabilities of the corresponding class Graphics. Another extension concerns the storage
of the style properties (like color, visibility, or font name). In contrast to the Java 2 approach,
each shape references an assigned style property object. The interfaces of these classes
are identical in both Java versions. Fig. 5 depicts the corresponding package hierarchy.

A Portable SVG-Viewer on Mobile Devices for Supporting Geographic Applications 7

Fig. 5 Package hierarchy of the SVG viewer.

5.1 The PersonalJava Version
As mentioned before, PersonalJava uses the Java AWT. This restricts the visualization

capabilities of an application considerably. For a shape, a color, a clipping rectangle and a
simple paint mode can be set. For graphical texts, the font name, the font size and a simple
font style can additionally be defined. By implementing some extra functionality, the
attributes listed in table 2 are completely or partially supported. These attributes can be
defined directly at a shape element using the style attribute and / or via CSS files referred
by the element name and / or the class attribute. Undefined style attributes are inherited
from the parent element.

Style attribute Explanation Support
stroke Color of the border of a shape All types of RGB definitions are

supported. Many of the predefined color
names are supported.

fill The fill color. see: stroke.
visibility The visibility of the shape. supported
font-family The name of font. supported – the existence of a font

depends on the device.
font-size The height of the font. supported
text-anchor The horizontal alignment of a text. supported
dominant-baseline
alignment-baseline

The vertical alignment of a text. It is supported without distinguishing
between dominant-baseline
and alignment-baseline.

font-style Specifies whether the text is to be
rendered using normal or italic
characters.

It is supported without distinguishing
between italic and oblique.

font-weight Specifies the boldness or lightness of
the characters.

It is supported by using the font styles
PLAIN and BOLD.

text-decoration Describes decorations that are added
to the text like underlining.

supported (but not the optional blinking)

Table 2 Supported SVG style attributes.

The SVG interpreter was integrated into a simple SVG viewer, which supports the map
visualization, zooming, and panning. Fig. 6 shows PDAs executing this viewer.

8 6th AGILE − Lyon 2003

Fig. 6 PDAs visualizing SVG documents.

5.2 The MIDP Version
The MIDP and its class javax.microedition.lcdui.Graphics are more

restricted than PersonalJava and the corresponding class java.awt.Graphics. One
major restriction concerns the non-existence of floating-point numbers. In the PersonalJava
version, coordinates have the data type double like in the package java.awt.geom. For
the MIDP, all coordinates are replaced by integer numbers. Therefore, the class
AffineTransform has been completely re-implemented by interpreting the integers as
rational numbers of limited precision.

An annoyance is the missing of a method for drawing filled polygons. At least, a
method for filled triangles would be helpful – this method is first introduced by the MIDP
version 2.0. Currently, this version has not been supported by mobile devices, yet.
Assuming the existence of the method fillTriangle, triangulations of polygons have to
be computed on the mobile device. A reduced performance for drawing filled areas would be
the result. Another solution is the use of OEM-specific classes provided by the manufacturer
of the device (fig. 4). However, the usage of such classes makes the application itself OEM-
specific.

The implemented SVG parser supports the same attributes as the PersonalJava
version. Some limitations are caused by MIDP restrictions like the support of only three fonts
or of only three font sizes. The implemented SVG parser is used by a midlet. A midlet is a
kind of applet in the context of the MIDP. This midlet realizes a simple SVG viewer that
provides a visualization of the map. Zooming and panning are supported by processing key-
pressed events. Fig. 7 shows the midlet running on a simulated PDA and mobile phone.

A Portable SVG-Viewer on Mobile Devices for Supporting Geographic Applications 9

Fig. 7 Simulated PDA and mobile phone performing the midlet.

6. CONCLUSIONS

In this paper, the support of XML-represented simple features on mobile devices like
PDAs and mobile phones was investigated. The approach assumes that a GML
representation of the geographic features is transformed into the SVG format. For
processing such SVG documents on a mobile device, a portable viewer is useful. In order to
be independent of the operating system of the client, Java was selected as programming
language. Two versions of Java are currently used on mobile devices: PersonalJava and the
Mobile Information Device Profile (MIDP) for the Java 2 Micro Edition (J2ME). For the
representation of the geometries, an object model was characterized. The implementation of
this object model and of an SVG parser was directed by the limitations and differences of
the two Java versions. On the top of this SVG parser, two SVG viewers were implemented.

7. REFERENCES

[1] World Wide Web Consortium, EXtensible Markup Language, W3C Recommendation, February
1998, http://www.w3.org/TR/REC-xml

[2] Open GIS Consortium, Geography Markup Language (GML), Version 2.1.2, OpenGIS
Implementation Specification, September 2002, http://www.opengis.org/techno/
implementation.htm

[3] World Wide Web Consortium, Scalable Vector Graphics (SVG) 1.0 Specification, W3C
Recommendation, September 2001, http://www.w3.org/TR/SVG/

[4] Open GIS Consortium Inc., OpenGIS Simple Feature Specification for SQL, Revision 1.1, May
1999, http://www.opengis.org/techno/implementation.htm

[5] World Wide Web Consortium, XSL Transformations (XSLT), Version 1.0, W3C Recommendation,
November 1999, http://www.w3.org/TR/xslt

[6] Abobe Systems Inc.: SVG Zone, http://www.adobe.com/svg/

10 6th AGILE − Lyon 2003

[7] Neumann A., Winter A., „Vector-based Web Cartography: Enabler SVG“, carto:net, Version 2.0,
October 2002, http://www.carto.net/papers/svg/index.html

[8] World Wide Web Consortium, Scalable Vector Graphics (SVG) 1.1 Specification, W3C
Recommendation, January 2003, http://www.w3.org/TR/SVG11/

[9] World Wide Web Consortium, Mobile SVG Profiles: SVG Tiny and SVG Basic, W3C
Recommendation, January 2003, http://www.w3.org/TR/SVGMobile/

[10] Sun Microsystems, Inc., PersonalJava Application Environment Specification, Version 1.2a (Final),
November 2000.

[11] Sun Microsystems, Inc., Mobile Information Device Profile, JCP Specification Java 2 Platform,
Micro Edition, Version 1.0a, December 2000.

[12] Sun Microsystems, Inc., Mobile Information Device Profile for Java 2 Micro Edition, Version 2.0,
November 2002.

[13] Sun Microsystems, Inc., Java API for XML Processing, Version 1.1, Final Release, February 2001,
ftp://ftp.java.sun.com/pub/jaxp/89h324hruh/jaxp-1_1-spec.pdf

[14] Apache Software Foundation, Xerxes Java Parser, http://xml.apache.org/xerces-j/
index.html

[15] Enhydra.org, kXML, Version 1, http://kxml.enhydra.org/index.html

[16] kObjects.org, kXML, Version 2, http://kxml.org/

[17] Brinkhoff T.: “Efficient Retrieval of Layered Data by Using R-trees”, submitted for publication, 2003.

