
Abstract
The management of geometric objects is a prime example
of an application where efficiency is the bottleneck; this
bottleneck cannot be eliminated without using suitable ac-
cess structures. The most popular approach for handling
complex spatial objects in spatial access methods is to use
their minimum bounding boxes as a geometric key. Obvi-
ously, the rough approximation by bounding boxes pro-
vides a fast but inaccurate filter for the set of answers to a
query. In order to speed up the query processing by a better
approximation quality, we investigate six different types of
approximations. Depending on the complexity of the ob-
jects and the type of queries, the approximations 5-corner,
ellipse and rotated bounding box clearly outperform the
bounding box. An important ingredient of our approach is
to organize these approximations in efficient spatial access
methods originally designed for bounding boxes.

1 Introduction
Geographic Information Systems (GIS) are characterized
by massive volumes of data, both spatial and non spatial. In
a geographic database, the number of objects goes easily
into the millions [3]. Therefore, the data are stored on a sec-
ondary storage medium. To achieve efficient and persistent
storage of these objects, a GIS is based on a spatial data-
base system. A geometric object is characterized by a geo-
metric component that determines shape and position of the
object in space. In most geographic/cartographic applica-
tions spatial objects are two-dimensional built on points,
lines and polygons as the basic primitives. As shown in
[12], non-point objects can be well represented by simple
polygons with holes.

The management of geometric objects, for instance in
cartography, is a prime example of an application where ef-
ficiency is the bottleneck; this bottleneck cannot be elimi-
nated without using suitable access structures. In a spatial
database system, the objects are organized and accessed by
spatial access methods (SAMs). Commonly, these objects
are modelled by simple polygons with holes which are ex-

tremely irregular and vary in the number of points as well
as in the number of holes. Hence, SAMs are not able to or-
ganize such complex polygons directly. Approximations
maintain the most important features of the objects (posi-
tion and extension) and therefore, they are used as geomet-
ric keys in a spatial access method.

The smallest aligned rectangle enclosing an object, the
minimum bounding box, is the most popular approxima-
tion. Spatial access methods map objects on a secondary
storage medium with fixed size blocks that can be ad-
dressed directly. Therefore, adjacent objects are combined
in regions that are associated to blocks. On the one hand,
typical block sizes are between 1 and 8 kbytes. On the other
hand, data files with object sizes of 3 to 10 kbytes in the av-
erage are not uncommon [6]. Therefore, only a few exact
object descriptions can be stored in one block. Obviously,
clustering a large set of spatially adjacent objects physical-
ly on one block can only be achieved on the level of ap-
proximations because approximations are short in their de-
scription and can reference to the exact object
representations [28].

There are several other reasons for using approxima-
tions. Often the computation of an estimated value, quickly
determined on the basis of approximations, is sufficient for
preparing and processing geometric queries. Furthermore,
many spatial queries can be answered, partially or com-
pletely, using approximations. The approximation-based
query processing is performed in two steps [18]: First, the
filter step identifies a superset of the response set by using
approximations as a geometric key. Second, the refinement
step, inspects the exact representation of each object of the
superset. In this step, complex and CPU-time intensive al-
gorithms are used for deciding whether the objects fulfil the
query condition. Obviously, the performance of approxi-
mation-based query processing depends on which type of
approximation is chosen for the objects. A suitable object
approximation is crucial for both, reducing the size of the
candidate set and identifying answers on the basis of ap-
proximations.
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The commonly used minimum bounding boxes are rath-
er rough and inaccurate object approximations. However,
they profit from a very efficient organization using spatial
access methods designed for bounding boxes. Several other
approaches have been suggested to maintain non-rectangu-
lar approximations by adequate spatial access methods, e.g.
circles in the sphere tree [17], or convex polygons in the
cell tree [8], polyhedra-tree [11] or P-tree [21]. From our
point of view, these structures are rather complicated such
that the processing of operations and queries as well as in-
sertions is very CPU-time intensive (see also [17]).

Our approach is first to use approximations which are
suitable for query processing on geometric objects and sec-
ond to manage these approximations in spatial access
methods originally designed for bounding boxes. Thus, on
the one hand we use robust and efficient spatial access
methods and on the other hand we improve the approxima-
tion-based query processing essentially. Using this ap-
proach, two important questions arise:
 • Which type of approximations is suitable for geometric

objects?
 • How efficient is the management of non-rectangular ap-

proximations in a spatial access method originally de-
signed for bounding boxes?

In the rest of this paper, we examine which type of approx-
imations is suitable for an approximation-based query
processing in spatial database systems. First, we introduce
some relevant classes of approximations. Then, in section
3 empirical results are presented that investigate the suita-
bility of the different types of approximations for geo-
graphic applications. Section 4 presents our approach and
an empirical performance evaluation of approximation-
based query processing. In particular, we discuss and in-
vestigate in detail the interaction of non-rectangular ap-
proximations organized in a SAM originally designed for
bounding boxes. The paper concludes with a summary
pointing out the main contributions and test results and giv-
ing an outlook to future activities.

2 Approximation-based query processing
In this section, we introduce a query processing mechanism
for managing large sets of complex polygonal objects.

2.1 Two-step query processing

From the literature no standard set of spatial queries fulfill-
ing all requirements of spatial applications is known [23].
Thus, it is necessary to provide a small set of basic spatial
queries which are efficiently supported by the database fa-
cilities. Application specific queries, e.g. presented in [17],
typically using more complex query conditions, can be de-
composed into sequences of such basic spatial queries. We
propose the following set of basic spatial queries:

 • Point query: Given point p, find all objects containing p.
 • Window query: Given an aligned window w, find all ob-

jects intersecting w.
 • Region query: Given a simple polygon with holes (SPH)

p, find all objects intersecting p.
 • Enclosure query: Given a SPH p, find all objects which

are contained by p.
 • Containment query: Given a SPH p, find all objects con-

taining p.
 • Nearest neighbour query: Given a point or SPH p, find

the nearest object(s) to p.
 • Spatial join: Given 2 sets S and S’ of SPHs. Find all pairs

(O, O’) of intersecting objects where O∈S and O’∈S’.
The approximation-based query processing (see Fig. 1) is
performed in two steps [18]: The first step, the so-called fil-
ter step, examines the approximations of the objects and
provides a fast but inaccurate filter for the response set. Us-
ing approximations, the filter step identifies a superset of
the response set. Since approximations provide no exact
object representations, the filter step does not exactly eval-
uate the query. The filter step yields a set of candidates
which may fulfil the query. More exactly, the set of candi-
dates contains all answers to the query and additionally it
may contain some objects not belonging to the response set
(false hits). Based on the filter step, for some objects we
can already decide that they belong to the response set (see
later on the example of Fig. 2). In the second step, called
refinement, the exact representations of these candidates
have to be inspected. In this step complex and CPU-time
intensive algorithms known from the field of computation-
al geometry are used for deciding which of the candidates
fulfil the query condition. Obviously, the performance of
approximation-based query processing depends on the
quality of the approximation chosen for the objects. A suit-
able object approximation is crucial for both, reducing the
size of the candidate set and identifying answers on the ba-
sis of approximations.

 Figure 1: Approximation-based query processing

Fig. 2 depicts an example for the two-step query process-
ing. Assume, the simple polygons are approximated by
minimum bounding boxes. In the specified region query
we search for all objects intersecting the shadowed query
polygon. In the filter step all boxes are determined that in-
tersect the query region. The objects a, b, c, and e belong to
the candidate set. Furthermore, at this point we can already
decide that b belongs to the response set. In the refinement
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step, we have to check whether the exact representation of
the objects a, c, and e really intersect the query region. In
this step, the object a is additionally identified as a correct
answer of the query.

 Figure 2: Example for the two-step query processing

From this schema of approximation-based query process-
ing the following criteria can be derived:
 • In the filter step, large sets of approximations have to be

searched for and have to be tested against the query con-
dition. Therefore, the approximations should be simple
in order to yield fast search and test algorithms (simplic-
ity criterion).

 • The performance of the refinement step depends on the
number of refined objects as well as on their complexity.
In [13] it is shown that query processing of complex spa-
tial objects is dominated by the complex and time con-
suming computational geometry algorithms. Therefore,
the primary goals for efficient query processing are first
to determine for as many answers as possible their mem-
bership to the response set and second to reduce the false
hits. For that the accuracy of the filter step has to be im-
proved by increasing the quality of the approximations
with respect to the original objects (quality criterion).

 • The time spent for constructing the approximation is a
further criterion to evaluate the suitability of a special
type of approximation used in query processing. Since
the construction of an approximation is only necessary
when the object is inserted or updated in the database,
higher overhead for the construction may be justified.

2.2 Quality of approximations

In the literature, several alternatives are proposed to meas-
ure the quality of approximations. For example, in [1] sev-
eral metrics are presented and investigated to compute the
distance for polygonal objects. However, in our application
we are interested in an improvement of the accuracy of the
filter step. The accuracy of the filter step is maximized by
minimizing the deviation of the approximation from the
original object. This deviation is measured by the false area
of the approximation which may be positive or negative
with respect to the original object. Therefore, we propose
as a measure of quality the following parameter called ap-
proximation quality GAppr.
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Definition 1: Approximation quality [22]

A(O) denotes the area of a spatial object O, Appr(O) de-
scribes an approximation of O and the symbol \ corre-
sponds to the geometric difference. In the enumerator, the
object area and the false areas of the approximation with re-
spect to the inside and outside of the object are summed up.
The value of the approximation quality is standardized by
division through the area of the object and presented in per
cent. An approximation quality of 100% occurs if and only
if the approximation is congruent with the original object.
An approximation quality of c≤100% describes a (c-100)%
false area of the approximation with respect to the area of
the original object.

2.3 Classification of approximations

Approximation techniques can be divided into three classes
[22]:

 • conservative approximations
 • progressive approximations
 • generalizing approximations

An approximation is called conservative iff any point in-
side the contour of the original object is also contained in
the conservative approximation. Analogously, an object is
progressively approximated if the point set of the approxi-
mation is a subset of the point set of the object. A general-
izing approximation tries to simplify the object contour
(e.g. by reducing the number of vertices). Generally, there
is no topological relation between the generalizing approx-
imation and the original object, i.e. neither is the object
completely covered by the approximation nor is the ap-
proximation completely contained in the object. Fig. 3 de-
picts examples of the different classes of approximations.

 Figure 3: Examples for the three classes of approximations

As already mentioned, in a spatial database approximations
should support the two-step query processing incorporating
the filter step and the refinement step. Generalizing approx-
imations are useless for query processing because of the
missing topological relation, but they are helpful for other
applications, e.g. the presentation of maps. By enclosing
the object in a conservative approximation, we achieve the
following saving: when the low-cost search for the approx-
imation fails, we know that the expensive search for the
original object must also fail. By using a progressive ap-
proximation, we achieve the analogous effect. Successful
searches for progressive approximations yield a definite

A O( ) A+ O \ Appr O[ ]( ) A Appr O[ ] \ O( )+
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answer, only failed searches must be followed by the cost-
lier search for the original object. The spatial queries de-
scribed in section 2.1 are characterized by a high selectivi-
ty. Therefore, in the following we discuss the conservative
approximations in detail. A progressive approximation
may be used in addition to the conservative approximation
in order to increase the number of objects which are identi-
fied as correct answers already in the filter step.

Conservative approximations can be grouped into con-
vex and concave conservative approximations. Following
the simplicity criterion, we restrict our considerations to
the class of convex approximations because computational
geometry algorithms for concave polygons are considera-
bly more time intensive than those for convex polygons.

2.4 Approximations

In the following, we will introduce six selected convex
conservative approximations which in our point of view are
suitable for spatial objects:

Minimum bounding box (MBB): The MBB is the small-
est aligned rectangle enclosing an object. It can be repre-
sented by four parameters that correspond to the
coordinates of the lower left and the upper right vertices of
the MBB. The MBB-approximation is unique and transla-
tional invariant but not rotational invariant. It can be com-
puted with a simple linear algorithm which determines the
minimum and maximum extension of the object in x- and
y-direction.

Rotated minimum bounding box (RMBB): If we give up
the restriction to align the MBB to the axes and allow rota-
tions, the approximation quality of the MBB can be im-
proved. Obviously, the resulting rotated MBB (RMBB for
short) is additionally rotational invariant. It can be repre-
sented by the four parameters of the bounding box and one
more parameter that correspond to the performed rotation.

Minimum bounding circle (MBC): The circle needs three
describing parameters (x-coordinate and y-coordinate of
the center of the circle and the radius). The approximation
with the minimum bounding circle is unique, translational
invariant and rotational invariant. In our tests we used a
randomized algorithm with an expected linear complexity
[30] which is based on Seidel’s optimal linear algorithm
[26]. A comparison of further methods can be found in [4].

Minimum bounding ellipse (MBE): Two-dimensional el-
lipses are determined by 5 parameters. Usually, the ellipse

is described by a matrix and the center P = (p1, p2).

The center is the intersection of the semiaxis of the ellipse
and describes the position of the ellipse in the plane. The
MBE-approximation is unique, translational and rotational
invariant. A deterministic O(n2)-algorithm for computing
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the minimum bounding ellipse is presented in [19]. In our
tests we used Welzl’s randomized algorithm [30] which has
an expected linear complexity.

Convex hull (CH): An obvious and popular approxima-
tion for simple polygons is the convex hull. The construc-
tion of the convex hull of a set of points is one of the best
understood problems in computational geometry. We used
Graham’s simple scan-algorithm [7] with time complexity
O (n log n). The construction of the convex hull of a simple
polygon is possible in O (n) time [15]. The required storage
for the convex hull approximation is determined by the
complexity of the object geometry and may vary from ob-
ject to object.

Minimum bounding n-corner (n-C): To obtain a prede-
fined constant storage requirement, it is possible to com-
pute the minimum bounding n-corner starting from the
convex hull of the polygon. An algorithm to construct the
n-C-approximation was proposed in [5] for the first time. A
detailed description and investigation of this algorithm is
presented in [21].

Fig. 4 visualizes the selected approximations using
Great Britain as an example. These approximations differ
especially in the approximation quality and storage re-
quirement. The convex hull has the best approximation
quality. The minimum bounding circle has the lowest stor-
age requirement. A first step of an analytical and qualita-
tive evaluation of approximations can be found in [22].

 Figure 4: Different presented approximations

3 Empirical comparison of approximations
We have approximated simple polygons with holes of var-
ious real maps to get expressive and realistic results on the
quality and the storage requirement of the selected approx-
imations. To be as general as possible, we used maps from
different sources with different resolutions. The data files
contain natural objects such as islands and lakes as well as
administrative areas such as counties. Fig. 5 depicts the
maps and Table 1 lists their characteristics. N is the number
of the polygons in the maps, mØ is the average number of

MBB RMBB MBC

MBE CH 4-C 5-C



vertices of a polygon, mmin and mmax the minimum and the
maximum number of vertices of a polygon occurring in the
map respectively.

 Figure 5: The analysed maps

The computed approximation qualities GAppr for the differ-
ent approximations and maps are presented in Table 2.
GAppr Ø is the average approximation quality of the differ-
ent maps. The required storage for the approximations is
listed in bytes in the row denoted by SAppr. 4 bytes are as-
sumed per parameter.

The results show that all approximations have an approxi-
mation quality which is nearly independent from the tested
maps. Obviously, the more parameters are available for the
representation of an approximation, the better is the ap-
proximation quality. The approximation quality of the 5-
corner is nearly the same as that of the convex hull. The
storage requirement of convex hulls varies extremely and is

map N m∅ mmin mmax source

Europe 809 84 4 869 [29]

BW 1315 572 6 3104 [14]

Lakes & Islands 1253 120 5 9106 [6]

Africa 104 2769 28 16324 [6]

 Table 1: Characteristics of the analysed maps

GAppr (%) CH 5-C 4-C RMBB MBE MBB MBC

Europe 125 133 144 163 170 193 213

BW 129 136 149 167 174 193 205

Lakes 119 128 139 157 160 197 230

Africa 123 133 144 161 168 189 211

GAppr Ø(%) 124 133 144 162 168 193 215

SAppr 40 32 20 20 16 12

 Table 2: Approximation quality in per cent

Africa Lakes &
Islands

Europe BW

on the average much higher than the storage requirement of
the other approximations (Europe 104 bytes, BW 184
bytes, Lakes & Islands 136 bytes and Africa 248 bytes).
The rotated MBB improves the approximation quality by
16% compared to the MBB, although only one additional
parameter is used; the RMBB approximates 4% better than
the minimum bounding ellipse which has the same storage
requirement. The 5-corner needs 6 additional parameters
compared to the MBB paying off in a of 31% gain over the
average approximation quality of the MBB.

The main advantages of an improvement of the approx-
imation quality with respect to query processing are:
 • Performing a point query, the probability to obtain a false

hit in the filter step is proportional to the false area of the
approximation normalized by the area of the original ob-
ject. In other words, the worse the approximation quality
is, the more often the exact object representation is un-
necessarily loaded into main memory and tested with
costly computational geometry algorithms. Therefore,
the saving of accesses to the exact object representation
is characterized by the difference of the approximation
qualities.

Table 1 points out that spatial objects occupy several
blocks (block sizes of 1 to 8 kbyte are common). There-
fore, object and approximation are not stored together in
one block. This implies that each access to the exact ob-
ject representation needs at least one, but on the average
several block accesses. The relative difference of the
number of accesses when using different approximation
techniques is calculated by the ratio of the approximation
qualities.

 • The time for refinement dominates the time for the filter
step [13]. Every improvement of the approximation qual-
ity results in an essential gain for the refinement step and
thus in query processing time. For point queries, the gain
in query processing time is proportional to the gain in ap-
proximation quality. Also for queries such as the region
query, the enclosure query and the containment query,
the access frequency to the exact representation depends
of the approximation quality. Efficiency increases also
for nearest neighbour queries and the spatial join. In par-
ticular, for the spatial join a high gain is expected because
approximated objects are tested in pairs. Therefore, the
improvement in approximation quality pays off quadrat-
ically in the total time for query processing.

4 Approximations stored in SAMs
The last section has shown the potential of improving total
query processing time when approximations with a high
approximation quality are used in query processing. In a
spatial database system, such approximations are efficient-
ly organized by spatial access methods. Some data struc-
tures were suggested that are designed for special types of



approximations. Examples are the sphere tree [17] for cir-
cles as well as the cell tree [8], the polyhedra-tree [11] and
the P-tree [21] for convex polygons. From our point of
view, these structures are rather complex such that the
processing of operations and queries as well as updates is
very CPU-time intensive (see also [17]). Such access meth-
ods have to organize circles or convex polygons in their di-
rectory. This is more difficult than organizing simple
aligned bounding boxes.

Our approach is to manage the different types of approx-
imations in spatial access methods originally designed for
bounding boxes. In several performance analyses and com-
parisons these spatial access methods have proven their ro-
bustness and efficiency. In this section, we demonstrate
that also the other approximations are efficiently managed
by such access methods.

4.1 Spatial access methods

Spatial access methods are designed for a dynamic organi-
zation of geometric data. To store and organize the data on
secondary storage, approximations are grouped into re-
gions. To perform spatial queries efficiently, spatially adja-
cent approximations are clustered into one region (local
order preservation [28]). A region corresponds to a physi-
cal block on secondary storage. Spatial access methods are
implemented as trees or hashing schemes. In the past few
years, a lot of spatial access methods were developed. Most
of them use minimum bounding boxes as spatial approxi-
mation, e.g. the grid file [16], the buddy tree [25], and the
R-tree [9]. A survey can be found in [20].

In [24] three techniques are presented for the organiza-
tion of complex spatial objects in SAMs: Clipping parti-
tions the data space into disjoint regions. The objects are
associated with each of the regions they intersect and thus
one object or a pointer is stored in each of the correspond-
ing blocks. In general, the technique of clipping may de-
grade query performance substantially, since the number of
objects (copies) to be stored increases, which in turn in-
creases the number of regions, thereby increasing the
number of copies, a vicious circle [27]. The transformation
technique views an object as a point in some parameter
space. Since transformations do not preserve the spatial
neighbourhood of objects in the original space, and since
the distribution of parameter points tends to be extremely
skewed, the query efficiency tend to be quite low [28]. The
third technique is overlapping regions. In this technique
each object is assigned to exactly one region. Overlapping
regions may induce a higher query time because there may
exist several regions potentially containing the searched
object. However, the R*-tree has demonstrated that it is
possible to organize spatial objects such that the overlap of
the regions in the directory is extremely small (see Fig. 6).

The R*-tree [2] is based on the well-known R-tree [9].
It manages a set of bounding boxes by grouping them re-
cursively into regions which are described by bounding
boxes themselves. The R*-tree uses a sophisticated strate-
gy to split regions. The strategy is based on three design
paradigms:
 • The dead space in a region, i.e. the area not covered by

any bounding box, is minimized.
 • The overlap of the regions is minimized.
 • The perimeter of a region is minimized.

 Figure 6: R*-tree partitioning of the map ‘Europe’

The R*-tree is a simple, robust, and efficient spatial access
method. This has been demonstrated in tests [2] and in a
comparison with other access methods [10]. Algorithmi-
cally it is simple to organize bounding boxes and to search
through the directory of the R*-tree testing bounding box-
es. Therefore, it is an interesting approach to use the R*-
tree for organizing different types of approximations.

4.2 Organization of approximations in the R*-tree

In section 3, we have pointed out the fruitful effects of ap-
proximations to query processing performance. In this sec-
tion we present the effects to the R*-tree when managing
different types of approximations:
 • In this case, sets of spatially adjacent approximations are

grouped into one region (data block) instead of MBBs. A
data block is described by a MBB which can be organ-
ized by the R*-tree in the normal way.

 • More complex approximations require more storage.
This increased storage requirement determines the max-
imum number of entries stored in a data block which in-
fluences the performance of the spatial access method.

 • In general, the selected approximations have a larger x-
extension and y-extension than the MBB. As a conse-
quence, this extension influences the extension of the
MBBs describing data blocks of the R*-tree.

Experimental setup
Since spatial access methods are often heuristic data
structures, analytical performance evaluations are hardly
possible or are restricted to (rarely occurring) uniform dis-
tributions. Thus, we investigate the performance of approx-
imation-based query processing in an empirical compari-
son with queries performed on real cartography data. For
our comparison, we select the R*-tree because of its men-
tioned characteristics simplicity, robustness and efficiency.

Level 1 Level 2 Level 3



The following tests examine R*-trees which store
33,204 objects representing a map of administrative re-
gions (counties) of Europe. For geographic applications, it
is realistic to assume that the directory does not exceed
height 3. Using block sizes of 4 kbytes, a R*-tree of height
3 can manage more than 300 millions of RMBB-approxi-
mations. To model the behaviour of large directory trees,
we choose fairly small directory blocks, with a maximum
fan out of 25 per directory block. Under this assumption the
33,204 objects generate an R*-tree of directory height 3 us-
ing MBB-approximations. The R*-trees use an LRU-buffer
with a capacity of 35 directory blocks. From our point of
view the buffer size should be larger than the maximum fan
out. In our tests the factor between maximum fan out and
buffer is 1.4. Larger buffer sizes yield similar results.

Query profile
In the following, we want to compare the performance of
the R*-tree storing different types of approximations. For
comparing the performance of different R*-trees, we need
a parameter to indicate the differences of the structures of
the R*-trees which are significant for the performance. R*-
trees differ in their sizes as well as in the shape, the area and
the overlap of their directory regions. These parameters are
presented in an integrated way when uniformly distributed
point queries are performed on the R*-trees. Therefore, we
have developed a query profile which corresponds as far as
possible to real applications: Typical sequences of point
queries contain query points hitting an object as well as of
points not hitting an object. The objects used in our tests
cover only part of the data space. Therefore, uniformly dis-
tributed query points over the complete data space do not
correspond to real applications, because the average time to
answer the queries would be dominated by the query points
not hitting an object: To avoid this effect, we define to the
covered data space D which is covered by the objects a que-
ry space Qε(D) (short: Q) where:

For this query space we can control the ratio of points not
hitting an object. In our tests we performed 10,000 point
queries uniformly distributed over the query space Q. The
parameter psucc describes the probability that a point of Q
lies in D. Fig. 7 shows an example for psucc = 0.41.

 Figure 7: Covered data space and query space
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The MBB-approximation is the most popular approxima-
tion used in spatial access methods. In the following, we
normalized the results of the comparisons in order to show
the differences to the traditional approach using the MBB-
approximation. The absolute values can be derived from
Table 3 where according to psucc the number of directory
block accesses (Accdir) and data block accesses (Accdata)
per point query are depicted when MBB-approximations
are used. The height of the directory of the tree is 3. Since
we want to investigate the time spent in the spatial access
method, accesses to the exact object representation during
the refinement step are not considered.

Higher storage requirement
More complex approximations have higher storage re-
quirements than the MBB approximation (see Table 2).
Therefore less approximations can be stored in one data
block. Thus with increasing storage requirement, the
number of data and directory blocks is increasing. The in-
fluence of higher storage requirement to the performance
of the R*-tree is depicted in Table 4. The number of block
accesses are normalized on the basis of the MBB-approxi-
mation (100%). S denotes the storage requirement for the
approximation measured in bytes. S consists of the storage
requirement for the representation of the approximation (4
bytes per parameter) and for the pointer to the exact repre-
sentation (4 bytes).

The number of data block accesses varies only slightly.
However, Accdir clearly depends on S; the number of direc-
tory block accesses depends roughly logarithmically on the
storage requirement. For S = 108 byte (the average storage
requirement of convex hulls in the Europe map), the height
of the directory was varying from 3 to 4. Therefore, the
block accesses in that row are essentially higher and not
comparable to the other rows.

psucc = 1.0 psucc = 0.72 psucc = 0.59 psucc = 0.41

Accdir 1.12 1.04 0.92 0.67

Accdata 1.76 1.39 1.16 0.81

 Table 3: Averaged block accesses for a MBB query

S (in bytes)
Approximation

psucc = 1.0 psucc = 0.59

Accdir (%) Accdata (%) Accdir (%) Accdata (%)

16 MBC 92 102 94 103

20 MBB 100 100 100 100

24 MBE/RMBB 127 108 125 108

36 4-C 151 106 141 102

44 5-C 163 108 149 104

108 CH 261 113 231 106

 Table 4: Block accesses for different storage requirements



Higher extension of approximation
The approximations of a set of objects are grouped into one
region. Except for the convex hull, all of the selected ap-
proximations have higher x- and y-extension than the
MBB-approximation. This yields a higher area extension
AAppr which is the product of the x-extension and the y-ex-
tension. We tested the influence of higher area extensions
on the performance of the R*-tree. To get a feeling which
area extensions are realistic, we computed the approxima-
tion extensions of the real data presented in section 3.
Table 5 depicts the average area extension normalized to
the MBB-approximation which is set to 100%.

Table 5 shows that on the average the area extension of the
5-corner and of the minimum bounding ellipse is about
22% higher than the area extension of the MBB. The area
extensions of the 4-corner, of the RMBB and of the circle
are 42% to 51% higher than the area extension of the MBB.

The area extension determines the size of the region
which describes the data block. Such a region is defined by
the MBB of the approximations contained in the associated
block. The higher the area of these MBBs, the worse is the
performance of the R*-tree, because more queries will ac-
cess to an extended region. Table 6 depicts the influences
of area extensions to the performance. Accdir is the number
of directory block accesses and Accdata the number of data
block accesses. Both are normalized to the accesses when
MBBs are used which again are set to 100%

Independent from the query files, we can observe an in-
crease of block accesses which is proportional to the in-
crease of the area extensions. The increase of the directory
block accesses is 20% of the extension increase and that of
data block accesses 50% of the increase in area extension.

Storing different types of approximations in the R*-tree
In the above subsections we examined higher storage re-
quirements and higher extensions of the approximations to
investigate their influence to the performance of the R*-
tree. In the following we analyse the performance of R*-
trees storing the selected approximations.

5-C 4-C RMBB MBE MBC

AAppr (%) 121 144 151 122 142

 Table 5: Area extensions of the approximations

A
(%)

psucc = 1.0 psucc = 0.59

Accdir (%) Accdata (%) Accdir (%) Accdata (%)

120 107 109 106 110

140 109 120 106 121

160 114 129 113 130

 Table 6: Block accesses for different area extensions

Table 7 depicts the performance of the different types of
approximations for one point query. Acc is the number of
block accesses in per cent normalized to the MBB-approx-
imation. Acc∆ is the necessary number of additional block
accesses for a point query not including the savings in the
refinement step. For an easier interpretation of the results,
we present in Table 7 once more the storage requirement
(S), the area extension (AAppr) and the average approxima-
tion quality (GAppr) of the selected approximations.

The following results are derived from Table 7:
 • The values show that the circle is not a suitable approxi-

mation; it approximates over 20% worse than the MBB
(GMBB = 193%) and needs also more block accesses than
the MBB.

 • The other approximations (except for the convex hull)
need 0.5 to 1.2 (for psucc = 1) and 0.3 to 0.8 (for psucc =
0.59) block accesses more than the MBB. However,
these additional accesses are generally more than com-
pensated by the accesses saved in the refinement step re-
sulting from the better approximation qualities. In other
words, the decreasing number of false hits more than
compensates the cost caused by the higher storage re-
quirement and higher area extension of the approxima-
tions.

 • The approximation quality of the 5-corner (133%) is al-
most as good as that of the convex hull (124%). But the
convex hull needs considerably more storage (the factors
are between 2.45 for Europe and 5.7 for Africa.) Thus,
the 5-corner approximation outperforms the convex hull
approximation, except for very complex objects.

 • In the refinement step, we can achieve a substantial per-
formance gain using approximations with a very high ap-
proximation quality. The more costly the refinement step
is, the more worthwhile is the usage of approximations
with a high approximation quality. In queries with an ex-
pensive refinement step, the 5-corner seems to be the best
candidate.

 • Large window queries do not considerably profit from a
high approximation quality. To support such queries as
well as the other queries, the storage requirement of an

Appr
S

(Byte)
AAppr
(%)

GAppr
(%)

psucc = 1.0 psucc = 0.59

Acc
(%)

Acc∆
Acc
(%)

Acc∆

CH 108 100 124 170 2.03 162 1.29

5-C 44 121 133 144 1.29 139 0.80

4-C 36 144 144 143 1.25 138 0.80

RMBB 24 151 162 130 0.85 128 0.59

MBE 24 123 168 118 0.51 115 0.31

MBC 16 142 215 105 0.13 106 0.12

 Table 7: Block accesses for different approximations



approximation should not be essentially higher than the
storage requirement of the MBB. Particularly the MBE-
and the RMBB-approximations are the best candidates if
approximation quality and storage requirement are
equally weighted.

Summarizing, we can say that for the approximations 5-
corner, RMBB and ellipse the block accesses for searching
the R*-tree are increased. However, the reduced number of
block accesses to false hits due to higher approximation
quality more than compensates this cost. Thus the cost for
the filter step is not increased for these approximations
when objects of high complexity occur. In [13] we have
shown that the time for the refinement step clearly domi-
nates the total time for two-step query processing. There-
fore, the total time for two-step query processing is
considerably improved because for a lower number of false
hits the expensive refinement algorithms are performed. In
particular, we can say that for point queries the gain in per-
formance corresponds to the gain in approximation quality
of our new approximations over the minimum bounding
box.

5 Conclusions
Approximations of objects which are used for a two-step
query processing technique should be simple to provide a
fast filter (simplicity criterion) and they should have a high
approximation quality (quality criterion) to reduce the
number of false hits and to identify as many final answers
as possible. There are a several convex conservative ap-
proximations which meet these requirements. In this paper,
we selected and investigated the minimum bounding box,
the convex hull, the minimum bounding 4- and 5-corner,
rotated boxes, ellipses and circles. The measured approxi-
mation qualities were almost independent of the various
tested maps. Let us emphasize that this result is very inter-
esting because we used maps from different sources with
different resolutions. A clear order of rank turned out. Nat-
urally, the convex hull has the best approximation quality
(124 %), followed by the 5-corner (133 %), the 4-corner
(144 %), the rotated box (162 %) and the ellipse (168 %).
Compared to the minimum bounding box (193 %), clear
gains of approximation quality were obtained. The better
the approximation quality, the fewer accesses to the exact
object representation are necessary. Thus, many procedure
calls of costly computational geometry algorithms are
avoided in the refinement step.

Using the R*-tree, we have shown that such approxima-
tions can efficiently be organized in a spatial access method
originally designed for bounding boxes. The simplicity and
robustness of the spatial access method is preserved, be-
cause in the directory simple bounding boxes are organized
and only in the data blocks more complex approximations
are stored. Obviously, in the filter step approximations oth-

er than the minimum bounding box need more block ac-
cesses when traversing the SAM because of their higher
storage requirement and their higher extension in x- and y-
direction. However, the reduced number of false hits due to
higher approximation quality results in a substantial gain in
the refinement step by avoiding time intensive computa-
tional geometry algorithms. This gain exceeds the slightly
higher access costs by far. It turned out that two-step query
processing is essentially more efficient when 5-corner or
minimum bounding ellipse or rotated minimum bounding
box approximations (stored in R*-trees) are used instead of
the popular minimum bounding box approximation. 5-cor-
ners have an extremely high approximation quality and de-
viate only 33% from the exact object representation. The
minimum bounding ellipse and the rotated minimum
bounding box approximation are the best choices when
storage requirement and approximation quality are equally
weighted.

As indicated the results of the previous section, it is the
reduced number of false hits which yields a considerable
improvement in total query time when using our new ap-
proximations.

Several interesting aspects and possibilities of improve-
ment are not yet included in this work. For instance, by us-
ing compressed representations (e.g. discrete descriptions
of approximation coordinates) approximations can be
stored in a more compact way. Therefore, the increase in
storage requirement is more or less negligible. Further-
more, the selected approximations are one-container ap-
proximations. Another possibility is to use multi-container
approximations [22].

As pointed out before, in approximation-based query
processing the spatial join profits especially from a higher
approximation quality. In this operation, objects are tested
for intersection in pairs and thus the improvement of the
approximation quality quadratically influences the per-
formance improvement. Therefore, a more detailed inves-
tigation of spatial joins is necessary.

The use of approximations seems to be useful also for
three-dimensional objects. Such objects occur in databases
for CAD/CAM. Because of the additional dimension, there
is a greater scope to improve the approximation quality.
Obviously, we need suitable approximation techniques for
three-dimensional objects. Not all of the selected approxi-
mation techniques for 2D can easily be generalized to 3D.
From ellipsoids and rotated 3D boxes we expect a substan-
tial improvement of approximation quality over the aligned
3D box.
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